702 research outputs found

    A model of protocell based on the introduction of a semi-permeable membrane in a stochastic model of catalytic reaction networks

    Get PDF
    In this work we introduce some preliminary analyses on the role of a semi-permeable membrane in the dynamics of a stochastic model of catalytic reaction sets (CRSs) of molecules. The results of the simulations performed on ensembles of randomly generated reaction schemes highlight remarkable differences between this very simple protocell description model and the classical case of the continuous stirred-tank reactor (CSTR). In particular, in the CSTR case, distinct simulations with the same reaction scheme reach the same dynamical equilibrium, whereas, in the protocell case, simulations with identical reaction schemes can reach very different dynamical states, despite starting from the same initial conditions.Comment: In Proceedings Wivace 2013, arXiv:1309.712

    A stochastic model of catalytic reaction networks in protocells

    Full text link
    Protocells are supposed to have played a key role in the self-organizing processes leading to the emergence of life. Existing models either (i) describe protocell architecture and dynamics, given the existence of sets of collectively self-replicating molecules for granted, or (ii) describe the emergence of the aforementioned sets from an ensemble of random molecules in a simple experimental setting (e.g. a closed system or a steady-state flow reactor) that does not properly describe a protocell. In this paper we present a model that goes beyond these limitations by describing the dynamics of sets of replicating molecules within a lipid vesicle. We adopt the simplest possible protocell architecture, by considering a semi-permeable membrane that selects the molecular types that are allowed to enter or exit the protocell and by assuming that the reactions take place in the aqueous phase in the internal compartment. As a first approximation, we ignore the protocell growth and division dynamics. The behavior of catalytic reaction networks is then simulated by means of a stochastic model that accounts for the creation and the extinction of species and reactions. While this is not yet an exhaustive protocell model, it already provides clues regarding some processes that are relevant for understanding the conditions that can enable a population of protocells to undergo evolution and selection.Comment: 20 pages, 5 figure

    Mechanism and substrate specificity of the flavin reductase ActVB from Streptomyces coelicolor.

    Get PDF
    International audienceActVB is the NADH:flavin oxidoreductase participating in the last step of actinorhodin synthesis in Streptomyces coelicolor. It is the prototype of a whole class of flavin reductases with both sequence and functional similarities. The mechanism of reduction of free flavins by ActVB has been studied. Although ActVB was isolated with FMN bound, we have demonstrated that it is not a flavoprotein. Instead, ActVB contains only one flavin binding site, suitable for the flavin reductase activity and with a high affinity for FMN. In addition, ActVB proceeds by an ordered sequential mechanism, where NADH is the first substrate. Whereas ActVB is highly specific for NADH, it is able to catalyze the reduction of a great variety of natural and synthetic flavins, but with K(m) values ranging from 1 microm (FMN) to 69 microm (lumiflavin). We show that both the ribitol-phosphate chain and the isoalloxazine ring contribute to the protein-flavin interaction. Such properties are unique and set the ActVB family apart from the well characterized Fre flavin reductase family

    A two-component flavin-dependent monooxygenase involved in actinorhodin biosynthesis in Streptomyces coelicolor.

    Get PDF
    International audienceThe two-component flavin-dependent monooxygenases belong to an emerging class of enzymes involved in oxidation reactions in a number of metabolic and biosynthetic pathways in microorganisms. One component is a NAD(P)H:flavin oxidoreductase, which provides a reduced flavin to the second component, the proper monooxygenase. There, the reduced flavin activates molecular oxygen for substrate oxidation. Here, we study the flavin reductase ActVB and ActVA-ORF5 gene product, both reported to be involved in the last step of biosynthesis of the natural antibiotic actinorhodin in Streptomyces coelicolor. For the first time we show that ActVA-ORF5 is a FMN-dependent monooxygenase that together with the help of the flavin reductase ActVB catalyzes the oxidation reaction. The mechanism of the transfer of reduced FMN between ActVB and ActVA-ORF5 has been investigated. Dissociation constant values for oxidized and reduced flavin (FMNox and FMNred) with regard to ActVB and ActVA-ORF5 have been determined. The data clearly demonstrate a thermodynamic transfer of FMNred from ActVB to ActVA-ORF5 without involving a particular interaction between the two protein components. In full agreement with these data, we propose a reaction mechanism in which FMNox binds to ActVB, where it is reduced, and the resulting FMNred moves to ActVA-ORF5, where it reacts with O2 to generate a flavinperoxide intermediate. A direct spectroscopic evidence for the formation of such species within ActVA-ORF5 is reported

    On RAF Sets and Autocatalytic Cycles in Random Reaction Networks

    Full text link
    The emergence of autocatalytic sets of molecules seems to have played an important role in the origin of life context. Although the possibility to reproduce this emergence in laboratory has received considerable attention, this is still far from being achieved. In order to unravel some key properties enabling the emergence of structures potentially able to sustain their own existence and growth, in this work we investigate the probability to observe them in ensembles of random catalytic reaction networks characterized by different structural properties. From the point of view of network topology, an autocatalytic set have been defined either in term of strongly connected components (SCCs) or as reflexively autocatalytic and food-generated sets (RAFs). We observe that the average level of catalysis differently affects the probability to observe a SCC or a RAF, highlighting the existence of a region where the former can be observed, whereas the latter cannot. This parameter also affects the composition of the RAF, which can be further characterized into linear structures, autocatalysis or SCCs. Interestingly, we show that the different network topology (uniform as opposed to power-law catalysis systems) does not have a significantly divergent impact on SCCs and RAFs appearance, whereas the proportion between cleavages and condensations seems instead to play a role. A major factor that limits the probability of RAF appearance and that may explain some of the difficulties encountered in laboratory seems to be the presence of molecules which can accumulate without being substrate or catalyst of any reaction.Comment: pp 113-12

    The role of backward reactions in a stochastic model of catalytic reaction networks

    Get PDF
    We investigate the role of backward reactions in a stochastic model of catalytic reaction network, with specific regard to the influence on the emergence of autocatalytic sets (ACSs), which are supposed to be one of the pre-requisites in the transition between non-living to living matter. In particular, we analyse the impact that a variation in the kinetic rates of forward and backward reactions may have on the overall dynamics. Significant effects are indeed observed, provided that the intensity of backward reactions is sufficiently high. In spite of an invariant activity of the system in terms of production of new species, as backward reactions are intensified, the emergence of ACSs becomes more likely and an increase in their number, as well as in the proportion of species belonging to them, is observed. Furthermore, ACSs appear to be more robust to fluctuations than in the usual settings with no backward reaction. This outcome may rely not only on the higher average connectivity of the reaction graph, but also on the distinguishing property of backward reactions of recreating the substrates of the corresponding forward reactions
    corecore