108 research outputs found

    The fungal literature-based occurrence database for southern West Siberia (Russia)

    Get PDF
    The paper presents the initiative on literature-based occurrence data mobilisation of fungi and fungi-related organisms (literature-based occurrences, Darwin Core MaterialCitation) to develop the Fungal literature-based occurrence database for the southern West Siberia (FuSWS). The initiative on mobilisation of literature-based occurrence data started in the northern part of West Siberia in 2016. The present project extends the initiative to the southern regions and includes ten administrative territories (Tyumen Region, Sverdlovsk Region, Chelyabinsk Region, Omsk Region, Kurgan Region, Tomsk Region, Novosibirsk Region, Kemerovo Region, Altai Territory and Republic of Altai). The area occupies the central to southern part of the West Siberian Plain and extends for about 1.5 K km from the west to the east from the eastern slopes of the Ural Mountains to Yenisey River and from north to south—about 1.3 K km. The total area equals about 1.4 million km . The initiative is actively growing in spatial, collaboration and data accumulation terms. The working group of about 30 mycologists from eight organisations dedicated to the data mobilisation was created as part of the Siberian Mycological Society (informal organisation since 2019). They have compiled the almost complete bibliographic list of mycology-related papers for the southern West Siberia, including over 900 publications for the last two centuries (the earliest dated 1800). All literature sources were digitised and an online library was created to integrate bibliography metadata and digitised papers using Zotero bibliography manager. The analysis of published sources showed that about two-thirds of works contain occurrences of fungi for the scope of mobilisation. At the time of the paper submission, the database had been populated with a total of about 8 K records from 93 sources. The dataset is uploaded to GBIF, where it is available for online search of species occurrences and/or download. The project's page with the introduction, templates, bibliography list, video-presentations and written instructions is available (in Russian) at the web site of the Siberian Mycological Society. The initiative will be continued in the following years to extract the records from all published sources. New information The paper presents the first project with the aim of literature-based occurrence data mobilisation of fungi and fungi-related organisms in the southern West Siberia. The full bibliography and a digital library of all regional mycological publications created for the first time includes about 900 published works. By the time of paper submission, nearly 8 K occurrence records were extracted from about 90 literature sources and integrated into the FuSWS database published in GBIF

    Crowdsourcing Fungal Biodiversity : Revision of Inaturalist Observations in Northwestern Siberia

    Get PDF
    The paper presents the first analysis of crowdsourcing data of all observations of fungi (including lichens) and myxomycetes in Northwestern Siberia uploaded to iNaturalist.org to date (24.02.2022). The Introduction presents an analysis of fungal diversity crowdsourcing globally, in Russia, and in the region of interest. Materials and methods describe the protocol of uploading data to iNaturalist.org, the structure of the crowdsourcing community. initiative to revise the accumulated data. procedures of data analysis, and compilation of a dataset of revised crowdsourced data. The Results present the analysis of accumulated data by several parameters: temporal, geographical and taxonomical scope, observation and identification efforts, identifiability of various taxa, species novelty and Red Data Book categories and the protection status of registered observations. The Discussion provides data on usability of crowdsourcing data for biodiversity research and conservation of fungi, including pros and contras. The Electronic Supplements to the paper include an annotated checklist of observations of protected species with information on Red Data Book categories and the protection status, and an annotated checklist of regional records of new taxa. The paper is supplemented with a dataset of about 15 000 revised and annotated records available through Global Biodiversity Information Facility (GBIF). The tradition of crowdsourcing is rooted in mycological societies around the world, including Russia. In Northwestern Siberia, a regional mycological club was established in 2018, encouraging its members to contribute observations of fungi on iNaturalist.org. A total of about 15 000 observations of fungi and myxomycetes were uploaded so far, by about 200 observers, from three administrative regions (Yamalo-Nenetsky Autonomous Okrug, Khanty-Mansi Autonomous Okrug, and Tyumen Region). The geographical coverage of crowdsourcing observations remains low. However. the observation activity has increased in the last four years. The goal of this study consisted of a collaborative effort of professional mycologists invited to help with the identification of these observations and analysis of the accumulated data. As a result, all observations were reviewed by at least one expert. About half of all the observations have been identified reliably to the species level and received Research Grade status. Of those, 90 species (195 records) represented records of taxa new to their respective regions: 876 records of 53 species of protected species provide important data for conservation programmes. The other half of the observations consists of records still under-identified for various reasons: poor quality photographs, complex taxa (impossible to identify without microscopic or molecular study). or lack of experts in a particular taxonomic group. The Discussion section summarises the pros and cons of the use of crowdsourcing for the study and conservation of regional fungal diversity, and summarises the dispute on this subject among mycologists. Further research initiatives involving crowdsourcing data must focus on an increase in the quality of observations and strive to introduce the habit of collecting voucher specimens among the community of amateurs. The timely feedback from experts is also important to provide quality and the increase of personal involvement.Peer reviewe

    Hydroclimatic Controls on the Isotopic (δ18 O, δ2 H, d-excess) Traits of Pan-Arctic Summer Rainfall Events

    Get PDF
    Arctic sea-ice loss is emblematic of an amplified Arctic water cycle and has critical feedback implications for global climate. Stable isotopes (delta O-18, delta H-2, d-excess) are valuable tracers for constraining water cycle and climate processes through space and time. Yet, the paucity of well-resolved Arctic isotope data preclude an empirically derived understanding of the hydrologic changes occurring today, in the deep (geologic) past, and in the future. To address this knowledge gap, the Pan-Arctic Precipitation Isotope Network (PAPIN) was established in 2018 to coordinate precipitation sampling at 19 stations across key tundra, subarctic, maritime, and continental climate zones. Here, we present a first assessment of rainfall samples collected in summer 2018 (n = 281) and combine new isotope and meteorological data with sea ice observations, reanalysis data, and model simulations. Data collectively establish a summer Arctic Meteoric Water Line where delta H-2 = 7.6.delta O-18-1.8 (r(2) = 0.96, p 0.75 parts per thousand/degrees C) were observed at continental sites, while statistically significant temperature relations were generally absent at coastal stations. Model outputs indicate that 68% of the summer precipitating air masses were transported into the Arctic from mid-latitudes and were characterized by relatively high delta O-18 values. Yet 32% of precipitation events, characterized by lower delta O-18 and high d-excess values, derived from northerly air masses transported from the Arctic Ocean and/or its marginal seas, highlighting key emergent oceanic moisture sources as sea ice cover declines. Resolving these processes across broader spatial-temporal scales is an ongoing research priority, and will be key to quantifying the past, present, and future feedbacks of an amplified Arctic water cycle on the global climate system

    Les droits disciplinaires des fonctions publiques : « unification », « harmonisation » ou « distanciation ». A propos de la loi du 26 avril 2016 relative à la déontologie et aux droits et obligations des fonctionnaires

    Get PDF
    The production of tt‾ , W+bb‾ and W+cc‾ is studied in the forward region of proton–proton collisions collected at a centre-of-mass energy of 8 TeV by the LHCb experiment, corresponding to an integrated luminosity of 1.98±0.02 fb−1 . The W bosons are reconstructed in the decays W→ℓν , where ℓ denotes muon or electron, while the b and c quarks are reconstructed as jets. All measured cross-sections are in agreement with next-to-leading-order Standard Model predictions.The production of ttt\overline{t}, W+bbW+b\overline{b} and W+ccW+c\overline{c} is studied in the forward region of proton-proton collisions collected at a centre-of-mass energy of 8 TeV by the LHCb experiment, corresponding to an integrated luminosity of 1.98 ±\pm 0.02 \mbox{fb}^{-1}. The WW bosons are reconstructed in the decays WνW\rightarrow\ell\nu, where \ell denotes muon or electron, while the bb and cc quarks are reconstructed as jets. All measured cross-sections are in agreement with next-to-leading-order Standard Model predictions

    Studies of beauty baryon decays to D0ph− and Λ+ch− final states

    Get PDF

    Measurement of forward WeνW\to e\nu production in pppp collisions at s=8\sqrt{s}=8\,TeV

    Get PDF
    A measurement of the cross-section for WeνW \to e\nu production in pppp collisions is presented using data corresponding to an integrated luminosity of 22\,fb1^{-1} collected by the LHCb experiment at a centre-of-mass energy of s=8\sqrt{s}=8\,TeV. The electrons are required to have more than 2020\,GeV of transverse momentum and to lie between 2.00 and 4.25 in pseudorapidity. The inclusive WW production cross-sections, where the WW decays to eνe\nu, are measured to be \begin{align*} \begin{split} \sigma_{W^{+} \to e^{+}\nu_{e}}&=1124.4\pm 2.1\pm 21.5\pm 11.2\pm 13.0\,\mathrm{pb},\\ \sigma_{W^{-} \to e^{-}\bar{\nu}_{e}}&=\,\,\,809.0\pm 1.9\pm 18.1\pm\,\,\,7.0\pm \phantom{0}9.4\,\mathrm{pb}, \end{split} \end{align*} where the first uncertainties are statistical, the second are systematic, the third are due to the knowledge of the LHC beam energy and the fourth are due to the luminosity determination. Differential cross-sections as a function of the electron pseudorapidity are measured. The W+/WW^{+}/W^{-} cross-section ratio and production charge asymmetry are also reported. Results are compared with theoretical predictions at next-to-next-to-leading order in perturbative quantum chromodynamics. Finally, in a precise test of lepton universality, the ratio of WW boson branching fractions is determined to be \begin{align*} \begin{split} \mathcal{B}(W \to e\nu)/\mathcal{B}(W \to \mu\nu)=1.020\pm 0.002\pm 0.019, \end{split} \end{align*} where the first uncertainty is statistical and the second is systematic.A measurement of the cross-section for WeνW \to e\nu production in pppp collisions is presented using data corresponding to an integrated luminosity of 22\,fb1^{-1} collected by the LHCb experiment at a centre-of-mass energy of s=8\sqrt{s}=8\,TeV. The electrons are required to have more than 2020\,GeV of transverse momentum and to lie between 2.00 and 4.25 in pseudorapidity. The inclusive WW production cross-sections, where the WW decays to eνe\nu, are measured to be \begin{equation*} \sigma_{W^{+} \to e^{+}\nu_{e}}=1124.4\pm 2.1\pm 21.5\pm 11.2\pm 13.0\,\mathrm{pb}, \end{equation*} \begin{equation*} \sigma_{W^{-} \to e^{-}\bar{\nu}_{e}}=\,\,\,809.0\pm 1.9\pm 18.1\pm\,\,\,7.0\pm \phantom{0}9.4\,\mathrm{pb}, \end{equation*} where the first uncertainties are statistical, the second are systematic, the third are due to the knowledge of the LHC beam energy and the fourth are due to the luminosity determination. Differential cross-sections as a function of the electron pseudorapidity are measured. The W+/WW^{+}/W^{-} cross-section ratio and production charge asymmetry are also reported. Results are compared with theoretical predictions at next-to-next-to-leading order in perturbative quantum chromodynamics. Finally, in a precise test of lepton universality, the ratio of WW boson branching fractions is determined to be \begin{equation*} \mathcal{B}(W \to e\nu)/\mathcal{B}(W \to \mu\nu)=1.020\pm 0.002\pm 0.019, \end{equation*} where the first uncertainty is statistical and the second is systematic.A measurement of the cross-section for W → eν production in pp collisions is presented using data corresponding to an integrated luminosity of 2 fb1^{−1} collected by the LHCb experiment at a centre-of-mass energy of s=8 \sqrt{s}=8 TeV. The electrons are required to have more than 20 GeV of transverse momentum and to lie between 2.00 and 4.25 in pseudorapidity. The inclusive W production cross-sections, where the W decays to eν, are measured to be σW+e+νe=1124.4±2.1±21.5±11.2±13.0pb, {\sigma}_{W^{+}\to {e}^{+}{\nu}_e}=1124.4\pm 2.1\pm 21.5\pm 11.2\pm 13.0\kern0.5em \mathrm{p}\mathrm{b}, σWeνe=809.0±1.9±18.1±7.0±9.4pb, {\sigma}_{W^{-}\to {e}^{-}{\overline{\nu}}_e}=809.0\pm 1.9\pm 18.1\pm \kern0.5em 7.0\pm \kern0.5em 9.4\,\mathrm{p}\mathrm{b}, where the first uncertainties are statistical, the second are systematic, the third are due to the knowledge of the LHC beam energy and the fourth are due to the luminosity determination

    Measurement of the (eta c)(1S) production cross-section in proton-proton collisions via the decay (eta c)(1S) -> p(p)over-bar

    Get PDF
    The production of the ηc(1S)\eta_c (1S) state in proton-proton collisions is probed via its decay to the ppˉp \bar{p} final state with the LHCb detector, in the rapidity range 2.06.52.0 6.5 GeV/c. The cross-section for prompt production of ηc(1S)\eta_c (1S) mesons relative to the prompt J/ψJ/\psi cross-section is measured, for the first time, to be σηc(1S)/σJ/ψ=1.74±0.29±0.28±0.18B\sigma_{\eta_c (1S)}/\sigma_{J/\psi} = 1.74 \pm 0.29 \pm 0.28 \pm 0.18 _{B} at a centre-of-mass energy s=7\sqrt{s} = 7 TeV using data corresponding to an integrated luminosity of 0.7 fb1^{-1}, and σηc(1S)/σJ/ψ=1.60±0.29±0.25±0.17B\sigma_{\eta_c (1S)}/\sigma_{J/\psi} = 1.60 \pm 0.29 \pm 0.25 \pm 0.17 _{B} at s=8\sqrt{s} = 8 TeV using 2.0 fb1^{-1}. The uncertainties quoted are, in order, statistical, systematic, and that on the ratio of branching fractions of the ηc(1S)\eta_c (1S) and J/ψJ/\psi decays to the ppˉp \bar{p} final state. In addition, the inclusive branching fraction of bb-hadron decays into ηc(1S)\eta_c (1S) mesons is measured, for the first time, to be B(bηcX)=(4.88±0.64±0.25±0.67B)×103B ( b \rightarrow \eta_c X ) = (4.88 \pm 0.64 \pm 0.25 \pm 0.67 _{B}) \times 10^{-3}, where the third uncertainty includes also the uncertainty on the J/ψJ/\psi inclusive branching fraction from bb-hadron decays. The difference between the J/ψJ/\psi and ηc(1S)\eta_c (1S) meson masses is determined to be 114.7±1.5±0.1114.7 \pm 1.5 \pm 0.1 MeV/c2^2.The production of the ηc(1S)\eta _c (1S) state in proton-proton collisions is probed via its decay to the ppp\overline{p} final state with the LHCb detector, in the rapidity range 2.06.5GeV/c2.0 6.5 \mathrm{{\,GeV/}{ c}} . The cross-section for prompt production of ηc(1S)\eta _c (1S) mesons relative to the prompt J/ψ{{ J}}/{\psi } cross-section is measured, for the first time, to be σηc(1S)/σJ/ψ=1.74±0.29±0.28±0.18B\sigma _{\eta _c (1S)}/\sigma _{{{{ J}}/{\psi }}} = 1.74\, \pm \,0.29\, \pm \, 0.28\, \pm \,0.18 _{{\mathcal{B}}} at a centre-of-mass energy s=7 TeV{\sqrt{s}} = 7 {~\mathrm{TeV}} using data corresponding to an integrated luminosity of 0.7 fb1^{-1} , and σηc(1S)/σJ/ψ=1.60±0.29±0.25±0.17B\sigma _{\eta _c (1S)}/\sigma _{{{{ J}}/{\psi }}} = 1.60 \pm 0.29 \pm 0.25 \pm 0.17 _{{\mathcal{B}}} at s=8 TeV{\sqrt{s}} = 8 {~\mathrm{TeV}} using 2.0 fb1^{-1} . The uncertainties quoted are, in order, statistical, systematic, and that on the ratio of branching fractions of the ηc(1S)\eta _c (1S) and J/ψ{{ J}}/{\psi } decays to the ppp\overline{p} final state. In addition, the inclusive branching fraction of b{b} -hadron decays into ηc(1S)\eta _c (1S) mesons is measured, for the first time, to be B(bηcX)=(4.88±0.64±0.29±0.67B)×103{\mathcal{B}}( b {\rightarrow } \eta _c X ) = (4.88\, \pm \,0.64\, \pm \,0.29\, \pm \, 0.67 _{{\mathcal{B}}}) \times 10^{-3} , where the third uncertainty includes also the uncertainty on the J/ψ{{ J}}/{\psi } inclusive branching fraction from b{b} -hadron decays. The difference between the J/ψ{{ J}}/{\psi } and ηc(1S)\eta _c (1S) meson masses is determined to be 114.7±1.5±0.1MeV ⁣/c2114.7 \pm 1.5 \pm 0.1 {\mathrm {\,MeV\!/}c^2} .The production of the ηc(1S)\eta_c (1S) state in proton-proton collisions is probed via its decay to the ppˉp \bar{p} final state with the LHCb detector, in the rapidity range 2.06.52.0 6.5 GeV/c. The cross-section for prompt production of ηc(1S)\eta_c (1S) mesons relative to the prompt J/ψJ/\psi cross-section is measured, for the first time, to be σηc(1S)/σJ/ψ=1.74±0.29±0.28±0.18B\sigma_{\eta_c (1S)}/\sigma_{J/\psi} = 1.74 \pm 0.29 \pm 0.28 \pm 0.18 _{B} at a centre-of-mass energy s=7\sqrt{s} = 7 TeV using data corresponding to an integrated luminosity of 0.7 fb1^{-1}, and σηc(1S)/σJ/ψ=1.60±0.29±0.25±0.17B\sigma_{\eta_c (1S)}/\sigma_{J/\psi} = 1.60 \pm 0.29 \pm 0.25 \pm 0.17 _{B} at s=8\sqrt{s} = 8 TeV using 2.0 fb1^{-1}. The uncertainties quoted are, in order, statistical, systematic, and that on the ratio of branching fractions of the ηc(1S)\eta_c (1S) and J/ψJ/\psi decays to the ppˉp \bar{p} final state. In addition, the inclusive branching fraction of bb-hadron decays into ηc(1S)\eta_c (1S) mesons is measured, for the first time, to be B(bηcX)=(4.88±0.64±0.29±0.67B)×103B ( b \rightarrow \eta_c X ) = (4.88 \pm 0.64 \pm 0.29 \pm 0.67 _{B}) \times 10^{-3}, where the third uncertainty includes also the uncertainty on the J/ψJ/\psi inclusive branching fraction from bb-hadron decays. The difference between the J/ψJ/\psi and ηc(1S)\eta_c (1S) meson masses is determined to be 114.7±1.5±0.1114.7 \pm 1.5 \pm 0.1 MeV/c2^2

    A study of CP violation in B-+/- -> DK +/- and B-+/- -> D pi(+/-) decays with D -> (KSK +/-)-K-0 pi(-/+) final states

    Get PDF
    A first study of CP violation in the decay modes B±[KS0K±π]Dh±B^\pm\to [K^0_{\rm S} K^\pm \pi^\mp]_D h^\pm and B±[KS0Kπ±]Dh±B^\pm\to [K^0_{\rm S} K^\mp \pi^\pm]_D h^\pm, where hh labels a KK or π\pi meson and DD labels a D0D^0 or D0\overline{D}^0 meson, is performed. The analysis uses the LHCb data set collected in pppp collisions, corresponding to an integrated luminosity of 3 fb1^{-1}. The analysis is sensitive to the CP-violating CKM phase γ\gamma through seven observables: one charge asymmetry in each of the four modes and three ratios of the charge-integrated yields. The results are consistent with measurements of γ\gamma using other decay modes

    Study of the rare B-s(0) and B-0 decays into the pi(+) pi(-) mu(+) mu(-) final state

    Get PDF
    A search for the rare decays Bs0π+πμ+μB_s^0 \to \pi^+\pi^-\mu^+\mu^- and B0π+πμ+μB^0 \to \pi^+\pi^-\mu^+\mu^- is performed in a data set corresponding to an integrated luminosity of 3.0 fb1^{-1} collected by the LHCb detector in proton-proton collisions at centre-of-mass energies of 7 and 8 TeV. Decay candidates with pion pairs that have invariant mass in the range 0.5-1.3 GeV/c2c^2 and with muon pairs that do not originate from a resonance are considered. The first observation of the decay Bs0π+πμ+μB_s^0 \to \pi^+\pi^-\mu^+\mu^- and the first evidence of the decay B0π+πμ+μB^0 \to \pi^+\pi^-\mu^+\mu^- are obtained and the branching fractions are measured to be B(Bs0π+πμ+μ)=(8.6±1.5(stat)±0.7(syst)±0.7(norm))×108\mathcal{B}(B_s^0 \to \pi^+\pi^-\mu^+\mu^-)=(8.6\pm 1.5\,({\rm stat}) \pm 0.7\,({\rm syst})\pm 0.7\,({\rm norm}))\times 10^{-8} and B(B0π+πμ+μ)=(2.11±0.51(stat)±0.15(syst)±0.16(norm))×108\mathcal{B}(B^0 \to \pi^+\pi^-\mu^+\mu^-)=(2.11\pm 0.51\,({\rm stat}) \pm 0.15\,({\rm syst})\pm 0.16\,({\rm norm}) )\times 10^{-8}, where the third uncertainty is due to the branching fraction of the decay B0J/ψ(μ+μ)K(890)0(K+π)B^0\to J/\psi(\to \mu^+\mu^-)K^*(890)^0(\to K^+\pi^-), used as a normalisation.A search for the rare decays Bs0→π+π−μ+μ− and B0→π+π−μ+μ− is performed in a data set corresponding to an integrated luminosity of 3.0 fb−1 collected by the LHCb detector in proton–proton collisions at centre-of-mass energies of 7 and 8 TeV . Decay candidates with pion pairs that have invariant mass in the range 0.5–1.3 GeV/c2 and with muon pairs that do not originate from a resonance are considered. The first observation of the decay Bs0→π+π−μ+μ− and the first evidence of the decay B0→π+π−μ+μ− are obtained and the branching fractions, restricted to the dipion-mass range considered, are measured to be B(Bs0→π+π−μ+μ−)=(8.6±1.5 (stat)±0.7 (syst)±0.7(norm))×10−8 and B(B0→π+π−μ+μ−)=(2.11±0.51(stat)±0.15(syst)±0.16(norm))×10−8 , where the third uncertainty is due to the branching fraction of the decay B0→J/ψ(→μ+μ−)K⁎(892)0(→K+π−) , used as a normalisation.A search for the rare decays Bs0→π+π−μ+μ− and B0→π+π−μ+μ− is performed in a data set corresponding to an integrated luminosity of 3.0 fb−1 collected by the LHCb detector in proton–proton collisions at centre-of-mass energies of 7 and 8 TeV . Decay candidates with pion pairs that have invariant mass in the range 0.5–1.3 GeV/c2 and with muon pairs that do not originate from a resonance are considered. The first observation of the decay Bs0→π+π−μ+μ− and the first evidence of the decay B0→π+π−μ+μ− are obtained and the branching fractions, restricted to the dipion-mass range considered, are measured to be B(Bs0→π+π−μ+μ−)=(8.6±1.5 (stat)±0.7 (syst)±0.7(norm))×10−8 and B(B0→π+π−μ+μ−)=(2.11±0.51(stat)±0.15(syst)±0.16(norm))×10−8 , where the third uncertainty is due to the branching fraction of the decay B0→J/ψ(→μ+μ−)K⁎(892)0(→K+π−) , used as a normalisation.A search for the rare decays Bs0π+πμ+μB_s^0 \to \pi^+\pi^-\mu^+\mu^- and B0π+πμ+μB^0 \to \pi^+\pi^-\mu^+\mu^- is performed in a data set corresponding to an integrated luminosity of 3.0 fb1^{-1} collected by the LHCb detector in proton-proton collisions at centre-of-mass energies of 7 and 8 TeV. Decay candidates with pion pairs that have invariant mass in the range 0.5-1.3 GeV/c2c^2 and with muon pairs that do not originate from a resonance are considered. The first observation of the decay Bs0π+πμ+μB_s^0 \to \pi^+\pi^-\mu^+\mu^- and the first evidence of the decay B0π+πμ+μB^0 \to \pi^+\pi^-\mu^+\mu^- are obtained and the branching fractions, restricted to the dipion-mass range considered, are measured to be B(Bs0π+πμ+μ)=(8.6±1.5(stat)±0.7(syst)±0.7(norm))×108\mathcal{B}(B_s^0 \to \pi^+\pi^-\mu^+\mu^-)=(8.6\pm 1.5\,({\rm stat}) \pm 0.7\,({\rm syst})\pm 0.7\,({\rm norm}))\times 10^{-8} and B(B0π+πμ+μ)=(2.11±0.51(stat)±0.15(syst)±0.16(norm))×108\mathcal{B}(B^0 \to \pi^+\pi^-\mu^+\mu^-)=(2.11\pm 0.51\,({\rm stat}) \pm 0.15\,({\rm syst})\pm 0.16\,({\rm norm}) )\times 10^{-8}, where the third uncertainty is due to the branching fraction of the decay B0J/ψ(μ+μ)K(890)0(K+π)B^0\to J/\psi(\to \mu^+\mu^-)K^*(890)^0(\to K^+\pi^-), used as a normalisation

    Angular analysis of the B-0 -> K*(0) e(+) e(-) decay in the low-q(2) region

    Get PDF
    An angular analysis of the B0K0e+eB^0 \rightarrow K^{*0} e^+ e^- decay is performed using a data sample, corresponding to an integrated luminosity of 3.0 {\mbox{fb}^{-1}}, collected by the LHCb experiment in pppp collisions at centre-of-mass energies of 7 and 8 TeV during 2011 and 2012. For the first time several observables are measured in the dielectron mass squared (q2q^2) interval between 0.002 and 1.120GeV2 ⁣/c4{\mathrm{\,Ge\kern -0.1em V^2\!/}c^4}. The angular observables FLF_{\mathrm{L}} and ATReA_{\mathrm{T}}^{\mathrm{Re}} which are related to the K0K^{*0} polarisation and to the lepton forward-backward asymmetry, are measured to be FL=0.16±0.06±0.03F_{\mathrm{L}}= 0.16 \pm 0.06 \pm0.03 and ATRe=0.10±0.18±0.05A_{\mathrm{T}}^{\mathrm{Re}} = 0.10 \pm 0.18 \pm 0.05, where the first uncertainty is statistical and the second systematic. The angular observables AT(2)A_{\mathrm{T}}^{(2)} and ATImA_{\mathrm{T}}^{\mathrm{Im}} which are sensitive to the photon polarisation in this q2q^2 range, are found to be AT(2)=0.23±0.23±0.05A_{\mathrm{T}}^{(2)} = -0.23 \pm 0.23 \pm 0.05 and ATIm=0.14±0.22±0.05A_{\mathrm{T}}^{\mathrm{Im}} =0.14 \pm 0.22 \pm 0.05. The results are consistent with Standard Model predictions.An angular analysis of the B0^{0} → K^{*}^{0} e+^{+} e^{−} decay is performed using a data sample, corresponding to an integrated luminosity of 3.0 fb1^{−1}, collected by the LHCb experiment in pp collisions at centre-of-mass energies of 7 and 8 TeV during 2011 and 2012. For the first time several observables are measured in the dielectron mass squared (q2^{2}) interval between 0.002 and 1.120 GeV2^{2} /c4^{4}. The angular observables FL_{L} and ATRe_{T}^{Re} which are related to the K^{*}^{0} polarisation and to the lepton forward-backward asymmetry, are measured to be FL_{L} = 0.16 ± 0.06 ± 0.03 and ATRe_{T}^{Re}  = 0.10 ± 0.18 ± 0.05, where the first uncertainty is statistical and the second systematic. The angular observables AT(2)_{T}^{(2)} and ATIm_{T}^{Im} which are sensitive to the photon polarisation in this q2^{2} range, are found to be AT(2)_{T}^{(2)}  = − 0.23 ± 0.23 ± 0.05 and ATIm_{T}^{Im}  = 0.14 ± 0.22 ± 0.05. The results are consistent with Standard Model predictions.An angular analysis of the B0K0e+eB^0 \rightarrow K^{*0} e^+ e^- decay is performed using a data sample, corresponding to an integrated luminosity of 3.0 {\mbox{fb}^{-1}}, collected by the LHCb experiment in pppp collisions at centre-of-mass energies of 7 and 8 TeV during 2011 and 2012. For the first time several observables are measured in the dielectron mass squared (q2q^2) interval between 0.002 and 1.120GeV2 ⁣/c4{\mathrm{\,Ge\kern -0.1em V^2\!/}c^4}. The angular observables FLF_{\mathrm{L}} and ATReA_{\mathrm{T}}^{\mathrm{Re}} which are related to the K0K^{*0} polarisation and to the lepton forward-backward asymmetry, are measured to be FL=0.16±0.06±0.03F_{\mathrm{L}}= 0.16 \pm 0.06 \pm0.03 and ATRe=0.10±0.18±0.05A_{\mathrm{T}}^{\mathrm{Re}} = 0.10 \pm 0.18 \pm 0.05, where the first uncertainty is statistical and the second systematic. The angular observables AT(2)A_{\mathrm{T}}^{(2)} and ATImA_{\mathrm{T}}^{\mathrm{Im}} which are sensitive to the photon polarisation in this q2q^2 range, are found to be AT(2)=0.23±0.23±0.05A_{\mathrm{T}}^{(2)} = -0.23 \pm 0.23 \pm 0.05 and ATIm=0.14±0.22±0.05A_{\mathrm{T}}^{\mathrm{Im}} =0.14 \pm 0.22 \pm 0.05. The results are consistent with Standard Model predictions
    corecore