29 research outputs found

    Soil and Alpine landscape evolution since the Lateglacial and early/mid Holocene in Val di Sole (Trentino, Italy)

    Full text link

    Wolves, Courts, and Public Policy: The Children of theNight Return to the Northern Rocky Mountains

    No full text
    Reviewed: Wolves, Courts, and Public Policy: The Children of the Night Return to the Northern Rocky Mountains By Edward A. Fitzgerald. Lanham, MD: Lexington Books, 2015. xvi + 223 pp. Hardcover: US99.00,ISBN978−1−4985−0267−2.Paperback:US 99.00, ISBN 978-1-4985-0267-2. Paperback: US 44.99, ISBN 978-1-4985-0269-6. E-book: US$ 42.50, 978-1-4985-0268-9

    Wolves, Courts, and Public Policy: The Children of the Night Return to the Northern Rocky Mountains

    No full text

    The BioREGIO Carpathians project: aims, methodology and results from the “Continuity and Connectivity” analysis

    No full text
    BioREGIO Carpathians is a transnational cooperation project, co-financed under the second call of the EU South East Europe Transnational Cooperation Programme, priority area “Protection and Improvement of the Environment”. BioREGIO Carpathians run for three years (2011–2013) and is a flagship project for the Carpathian Convention (article four dealing with landscape and biological diversity), its Biodiversity Protocol and the Biodiversity Working Group. The project is built on the conservation, restoration and valorisation of the Carpathians ecological continuum to enable large herbivores and carnivores to live in coexistence with modern society. The Carpathian countries are expecting a massive pressure to modernize and extend their road infrastructures. If not considering the requirements of ecological network, this run-to-development will enhance landscape fragmentation, limit dispersal and genetic exchange of wildlife species. BioREGIO applied a multi-disciplinary approach (physical, legal and socio-economic) in order to identify the most influencing barriers regarding connectivity throughout the Carpathians. Using two ArcGIS 10.0 tools in a three-step approach and a series of site visits, the continuity and connectivity analysis identified not only physical barriers but also legal aspects and socio-economic behaviour that are influencing ecological connectivity and playing a major role to conserve wildlife population. The investigation on the ground together with local experts and stakeholders enabled the adaptation of the GIS results and the development of feasible solutions to overcome the detected barriers with recommended priorities for implementing appropriate measurements to maintain connectivity and to sustain large carnivores, herbivores and biodiversity in the Carpathians

    The BioREGIO Carpathians project: aims, methodology and results from the “Continuity and Connectivity” analysis

    No full text
    BioREGIO Carpathians is a transnational cooperation project, co-financed under the second call of the EU South East Europe Transnational Cooperation Programme, priority area “Protection and Improvement of the Environment”. BioREGIO Carpathians run for three years (2011–2013) and is a flagship project for the Carpathian Convention (article four dealing with landscape and biological diversity), its Biodiversity Protocol and the Biodiversity Working Group. The project is built on the conservation, restoration and valorisation of the Carpathians ecological continuum to enable large herbivores and carnivores to live in coexistence with modern society. The Carpathian countries are expecting a massive pressure to modernize and extend their road infrastructures. If not considering the requirements of ecological network, this run-to-development will enhance landscape fragmentation, limit dispersal and genetic exchange of wildlife species. BioREGIO applied a multi-disciplinary approach (physical, legal and socio-economic) in order to identify the most influencing barriers regarding connectivity throughout the Carpathians. Using two ArcGIS 10.0 tools in a three-step approach and a series of site visits, the continuity and connectivity analysis identified not only physical barriers but also legal aspects and socio-economic behaviour that are influencing ecological connectivity and playing a major role to conserve wildlife population. The investigation on the ground together with local experts and stakeholders enabled the adaptation of the GIS results and the development of feasible solutions to overcome the detected barriers with recommended priorities for implementing appropriate measurements to maintain connectivity and to sustain large carnivores, herbivores and biodiversity in the Carpathians

    Bicuspid Aortic Valve in Children and Adolescents: A Comprehensive Review

    No full text
    Bicuspid aortic valve (BAV) is the most common congenital heart defect. Prevalence of isolated BAV in the general pediatric population is about 0.8%, but it has been reported to be as high as 85% in patients with aortic coarctation. A genetic basis has been recognized, with great heterogeneity. Standard BAV terminology, recently proposed on the basis of morpho-functional assessment by transthoracic echocardiography, may be applied also to the pediatric population. Apart from neonatal stenotic BAV, progression of valve dysfunction and/or of the associated aortic dilation seems to be slow during pediatric age and complications are reported to be much rarer in comparison with adults. When required, because of severe BAV dysfunction, surgery is most often the therapeutic choice; however, the ideal initial approach to treat severe aortic stenosis in children or adolescents is not completely defined yet, and a percutaneous approach may be considered in selected cases as a palliative option in order to postpone surgery. A comprehensive and tailored evaluation is needed to define the right intervals for cardiologic evaluation, indications for sport activity and the right timing for intervention

    Carbon sequestration and fertility after centennial time scale incorporation of charcoal into soil

    Get PDF
    The addition of pyrogenic carbon (C) in the soil is considered a potential strategy to achieve direct C sequestration and potential reduction of non-CO2 greenhouse gas emissions. In this paper, we investigated the long term effects of charcoal addition on C sequestration and soil physico-chemical properties by studying a series of abandoned charcoal hearths in the Eastern Alps of Italy established in the XIX century. This natural setting can be seen as an analogue of a deliberate experiment with replications. Carbon sequestration was assessed indirectly by comparing the amount of pyrogenic C present in the hearths (23.3+/-4.7 kg C m(-2)) with the estimated amount of charcoal that was left on the soil after the carbonization (29.3+/-5.1 kg C m(-2)). After taking into account uncertainty associated with parameters' estimation, we were able to conclude that 80+/-21% of the C originally added to the soil via charcoal can still be found there and that charcoal has an overall Mean Residence Time of 650+/-139 years, thus supporting the view that charcoal incorporation is an effective way to sequester atmospheric CO2. We also observed an overall change in the physical properties (hydrophobicity and bulk density) of charcoal hearth soils and an accumulation of nutrients compared to the adjacent soil without charcoal. We caution, however, that our site-specific results should not be generalized without further study

    Charcoal and stable soil organic matter as indicators of fire frequency, climate and past vegetation in volcanic soils of Mt. Etna, Sicily

    Full text link
    Charcoal fragments in soils are useful to reconstruct past vegetation because the level of preservation is often good enough to determine the tree genus. All forest ecosystems have the potential to burn as a result of naturally occurring or human-induced fires. Forest fires are coupled to climate and are a not-negligible factor of pedogenesis in Mediterranean areas, where they occur frequently. Furthermore, soil organic matter (SOM) is prone to undergo peculiar changes due to forest fires, both in terms of quantity and quality. A soil sequence along an elevational gradient ranging from Mediterranean to subalpine climate zones on slopes of Mt. Etna (Sicily, Italy) was investigated in respect of soil organic C and charcoal. The amount of charcoal and the identification of charred species gave an indication of the fire frequency and vegetation changes that have occurred in the past. The distribution into labile and stable organic fractions provided insight into the stabilisation and turnover mechanisms of SOM. The stable organic matter fraction was measured as the residue of a H2O2 treatment. The soils along the altitudinal sequence are variations of Vitric Andosols that developed on a single trachy-basaltic lava flow having an age of 10–15 ky BP. Maquis vegetation dominates at the lower sites of the toposequence, followed by oak- and chestnut-forests at mid elevations, and pine-forest at the highest-elevated sites. Charcoals are older at higher elevations (ages of up to 1.5 ky cal BP). Here, the vegetation type has not changed over the last > 1000 years, as all charcoal pieces were identified as Pinus nigra. Charred material at the lower sites could be identified as particles of deciduous shrubs, Quercus, Castanea sativa, Lonicera implexa and Cytisus spp. with mostly a modern age up to about 300 y cal BP. A similar finding was obtained for the stable (H2O2 resistant) SOM. Very high ages for this fraction were found at the highest elevations where it had an age of up to 8.2 ky BP — an age that is close to the start of soil formation. At the lower sites, where frequent bush fires often destroyed a part of the stable fraction, the stable SOM fraction had a maximum age of 1 ky. The studied soils have recorded the signals of the interrelated factors fire frequency, climatic effects and vegetation whose role cannot always be clearly distinguished. With decreasing altitude and with a warmer climate, vegetation changes and fire frequency, org. C and especially nitrogen abundance and the amount of labile SOM increases. At the lower sites, charcoal particles reflect the more recent vegetation probably because the repeated fires here hindered their preservation. Our findings hence suggest that a high fire frequency is a powerful rejuvenating factor for soil organic matter, removing part of the old SOM and promoting plant recolonisation that is a source of young SOM. Fire frequency and intensity on Mt. Etna is, however, moderate enough even at the lowest altitudes for the organic matter pool to be high and not depleted
    corecore