255 research outputs found

    Optimizing the energy with quantum Monte Carlo: A lower numerical scaling for Jastrow-Slater expansions

    Get PDF
    We present an improved formalism for quantum Monte Carlo calculations of energy derivatives and properties (e.g. the interatomic forces), with a multideterminant Jastrow-Slater function. As a function of the number NeN_e of Slater determinants, the numerical scaling of O(Ne)O(N_e) per derivative we have recently reported is here lowered to O(Ne)O(N_e) for the entire set of derivatives. As a function of the number of electrons NN, the scaling to optimize the wave function and the geometry of a molecular system is lowered to O(N3)+O(NNe)O(N^3)+O(N N_e), the same as computing the energy alone in the sampling process. The scaling is demonstrated on linear polyenes up to C60_{60}H62_{62} and the efficiency of the method is illustrated with the structural optimization of butadiene and octatetraene with Jastrow-Slater wave functions comprising as many as 200000 determinants and 60000 parameters

    Optimized Jastrow-Slater wave functions for ground and excited states: Application to the lowest states of ethene

    Full text link
    A quantum Monte Carlo method is presented for determining multi-determinantal Jastrow-Slater wave functions for which the energy is stationary with respect to the simultaneous optimization of orbitals and configuration interaction coefficients. The approach is within the framework of the so-called energy fluctuation potential method which minimizes the energy in an iterative fashion based on Monte Carlo sampling and a fitting of the local energy fluctuations. The optimization of the orbitals is combined with the optimization of the configuration interaction coefficients through the use of additional single excitations to a set of external orbitals. A new set of orbitals is then obtained from the natural orbitals of this enlarged configuration interaction expansion. For excited states, the approach is extended to treat the average of several states within the same irreducible representation of the pointgroup of the molecule. The relationship of our optimization method with the stochastic reconfiguration technique by Sorella et al. is examined. Finally, the performance of our approach is illustrated with the lowest states of ethene, in particular with the difficult case of the singlet 1B_1u state.Comment: 12 pages, 2 figure

    Simple formalism for efficient derivatives and multi-determinant expansions in quantum Monte Carlo

    Get PDF
    We present a simple and general formalism to compute efficiently the derivatives of a multi-determinant Jastrow-Slater wave function, the local energy, the interatomic forces, and similar quantities needed in quantum Monte Carlo. Through a straightforward manipulation of matrices evaluated on the occupied and virtual orbitals, we obtain an efficiency equivalent to algorithmic differentiation in the computation of the interatomic forces and the optimization of the orbital paramaters. Furthermore, for a large multi-determinant expansion, the significant computational gain recently reported for the calculation of the wave function is here improved and extended to all local properties in both all-electron and pseudopotential calculations.Comment: 15 pages, 3 figure

    Excitation energies from density functional perturbation theory

    Full text link
    We consider two perturbative schemes to calculate excitation energies, each employing the Kohn-Sham Hamiltonian as the unperturbed system. Using accurate exchange-correlation potentials generated from essentially exact densities and their exchange components determined by a recently proposed method, we evaluate energy differences between the ground state and excited states in first-order perturbation theory for the Helium, ionized Lithium and Beryllium atoms. It was recently observed that the zeroth-order excitations energies, simply given by the difference of the Kohn-Sham eigenvalues, almost always lie between the singlet and triplet experimental excitations energies, corrected for relativistic and finite nuclear mass effects. The first-order corrections provide about a factor of two improvement in one of the perturbative schemes but not in the other. The excitation energies within perturbation theory are compared to the excitations obtained within Δ\DeltaSCF and time-dependent density functional theory. We also calculate the excitation energies in perturbation theory using approximate functionals such as the local density approximation and the optimized effective potential method with and without the Colle-Salvetti correlation contribution

    A simple and efficient approach to the optimization of correlated wave functions

    Full text link
    We present a simple and efficient method to optimize within energy minimization the determinantal component of the many-body wave functions commonly used in quantum Monte Carlo calculations. The approach obtains the optimal wave function as an approximate perturbative solution of an effective Hamiltonian iteratively constructed via Monte Carlo sampling. The effectiveness of the method as well as its ability to substantially improve the accuracy of quantum Monte Carlo calculations is demonstrated by optimizing a large number of parameters for the ground state of acetone and the difficult case of the 11B1u1{}^1{B}_{1u} state of hexatriene.Comment: 5 pages, 1 figur

    Size-consistent variational approaches to non-local pseudopotentials: standard and lattice regularized diffusion Monte Carlo methods revisited

    Get PDF
    We propose improved versions of the standard diffusion Monte Carlo (DMC) and the lattice regularized diffusion Monte Carlo (LRDMC) algorithms. For the DMC method, we refine a scheme recently devised to treat non-local pseudopotential in a variational way. We show that such scheme --when applied to large enough systems-- maintains its effectiveness only at correspondingly small enough time-steps, and we present two simple upgrades of the method which guarantee the variational property in a size-consistent manner. For the LRDMC method, which is size-consistent and variational by construction, we enhance the computational efficiency by introducing (i) an improved definition of the effective lattice Hamiltonian which remains size-consistent and entails a small lattice-space error with a known leading term, and (ii) a new randomization method for the positions of the lattice knots which requires a single lattice-space.Comment: 10 pages, 4 figures, submitted to the Journal of Chemical Physic

    Perturbatively selected configuration-interaction wave functions for efficient geometry optimization in quantum Monte Carlo

    Get PDF
    We investigate the performance of a class of compact and systematically improvable Jastrow-Slater wave functions for the efficient and accurate computation of structural properties, where the determinantal component is expanded with a perturbatively selected configuration interaction scheme (CIPSI). We concurrently optimize the molecular ground-state geometry and full wave function -- Jastrow factor, orbitals, and configuration interaction coefficients-- in variational Monte Carlo (VMC) for the prototypical case of 1,3-trans-butadiene, a small yet theoretically challenging π\pi-conjugated system. We find that the CIPSI selection outperforms the conventional scheme of correlating orbitals within active spaces chosen by chemical intuition: it gives significantly better variational and diffusion Monte Carlo energies for all but the smallest expansions, and much smoother convergence of the geometry with the number of determinants. In particular, the optimal bond lengths and bond-length alternation of butadiene are converged to better than one m\AA\ with just a few thousand determinants, to values very close to the corresponding CCSD(T) results. The combination of CIPSI expansion and VMC optimization represents an affordable tool for the determination of accurate ground-state geometries in quantum Monte Carlo

    Excitations in photoactive molecules from quantum Monte Carlo

    Get PDF
    Despite significant advances in electronic structure methods for the treatment of excited states, attaining an accurate description of the photoinduced processes in photoactive biomolecules is proving very difficult. For the prototypical photosensitive molecules, formaldimine, formaldehyde and a minimal protonated Schiff base model of the retinal chromophore, we investigate the performance of various approaches generally considered promising for the computation of excited potential energy surfaces. We show that quantum Monte Carlo can accurately estimate the excitation energies of the studied systems if one constructs carefully the trial wave function, including in most cases the reoptimization of its determinantal part within quantum Monte Carlo. While time-dependent density functional theory and quantum Monte Carlo are generally in reasonable agreement, they yield a qualitatively different description of the isomerization of the Schiff base model. Finally, we find that the restricted open shell Kohn-Sham method is at variance with quantum Monte Carlo in estimating the lowest-singlet excited state potential energy surface for low-symmetry molecular structures.Comment: 10 pages, 6 figure

    Excited states with selected CI-QMC: chemically accurate excitation energies and geometries

    Get PDF
    We employ quantum Monte Carlo to obtain chemically accurate vertical and adiabatic excitation energies, and equilibrium excited-state structures for the small, yet challenging, formaldehyde and thioformaldehyde molecules. A key ingredient is a robust protocol to obtain balanced ground- and excited-state Jastrow-Slater wave functions at a given geometry, and to maintain such a balanced description as we relax the structure in the excited state. We use determinantal components generated via a selected configuration interaction scheme which targets the same second-order perturbation energy correction for all states of interest at different geometries, and we fully optimize all variational parameters in the resultant Jastrow-Slater wave functions. Importantly, the excitation energies as well as the structural parameters in the ground and excited states are converged with very compact wave functions comprising few thousand determinants in a minimally augmented double-ζ\zeta basis set. These results are obtained already at the variational Monte Carlo level, the more accurate diffusion Monte Carlo method yielding only a small improvement in the adiabatic excitation energies. We find that matching Jastrow-Slater wave functions with similar variances can yield excitations compatible with our best estimates; however, the variance-matching procedure requires somewhat larger determinantal expansions to achieve the same accuracy, and it is less straightforward to adapt during structural optimization in the excited state.Comment: 11 pages, 4 figure
    • …
    corecore