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ABSTRACT: We present an improved formalism for quantum Monte
Carlo calculations of energy derivatives and properties (e.g., the interatomic
forces), with a multideterminant Jastrow−Slater function. As a function of
the number Ne of Slater determinants, the numerical scaling of O(Ne) per
derivative we have recently reported is here lowered to O(Ne) for the entire
set of derivatives. As a function of the number of electrons N, the scaling
to optimize the wave function and the geometry of a molecular system
is lowered to O(N3) + O(NNe), the same as computing the energy alone
in the sampling process. The scaling is demonstrated on linear polyenes
up to C60H62 and the efficiency of the method is illustrated with the
structural optimization of butadiene and octatetraene with Jastrow−Slater
wave functions comprising as many as 200 000 determinants and 60 000
parameters.

1. INTRODUCTION

Quantum Monte Carlo methods (QMC) are first-principle
methods which can efficiently solve the Schrödinger equation.
For Fermionic systems, they are powerful variational approaches
because they can handle a large variety of variational wave func-
tions Ψ(R), where R = (r1...rN) represents the coordinates of
the N electrons of the system. Here, the vector ri = (xi,yi,zi,σi)
indicates the three spatial coordinates of the electron i, (xi,yi,zi)
and its spin component σi (σ = ±i

1
2
). This flexibility stems

from the fact that integrals are not computed analytically but
from a stochastic sampling. For example, the variational energy is

∫= Ψ
̂ Ψ

Ψ
E d

H
R R R( ) ( )2

(1)

where Ĥ is the Hamiltonian and Ψ is normalized. Equation 1 can
be interpreted as the expectation value of a random variable, the
so-called local energy EL = ĤΨ/Ψ, on the probability density
Ψ2(R). QMC methods can be used as benchmark methods also
for relatively large systems thanks to their favorable scaling with
the number of particles N. For a given parametrization of Ψ,
E is typically computed with a scaling O(N2) in memory
requirements and O(N3) in CPU per Monte Carlo step.
In practice, one needs to optimize the parameters of Ψ and the
geometry of a molecular system. Despite the availability of
stable wave function optimization methods,1 such techniques
remain costly, and one of the main reasons is that a large
number of derivatives of E (typically O(N2)) must be computed.
Lowering the numerical scaling per derivative is therefore

important. For single determinants, Sorella et al. have found
that the low-variance estimators of the 3Natoms = O(N) inter-
molecular forces can be calculated with a scaling O(N3) instead
of O(N4) with the use of algorithmic differentiation tech-
niques.2 We have recently recovered the same reduction using
transparent matricial formulas and extended it to the O(N2)
orbital coefficients.3

For multireference expansions, the Jastrow−Slater wave func-
tion takes the form

∑Ψ =
=

J c DR R( ) ( )
I

N

I I
0

e

(2)

where J(R) is a positive Jastrow correlation factor, D0 is a
reference Slater determinant, and DI with I > 0 denotes Ne
additional excited determinants. More explicitly, the determi-
nantal component can be written as

∑Φ =
=

c Adet( )
I

N

I I
0

e

(3)

where, for a system including N electrons, the matrix AI is an
N × N Slater matrix, built from N of the Norb molecular spin−
orbitals ϕi(r) (1 ≤ i ≤ Norb). Mathematically, AI comprises
N columns of the N × Norb matrix Ã defined as follows

ϕ̃ =A r( )ij j i (4)
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For this type of wave functions, Clark et al.4 have proposed
a method to compute Ψ with a scaling O(Ne) and EL with a
scaling O(NNe). We have further reduced this scaling to O(Ne)
and extended it to any derivative of EL.

3 The derivatives of EL
are useful because they are involved in low-variance estimators
for forces and observables.5−7

At the origin of this reduction is the observation3 that for any
one-body operator Ô, such as the Laplacian or the nonlocal
pseudopotential contributions to EL, the expression (ÔDI)/DI
is a first-order derivative with respect to a suitable parameter λ.
For instance, while being a sum of second-order derivatives
with respect to the electron coordinates, the Laplacian acting
on any determinant AI of the expansion can be recast in the form

λ
λ

∇
=

∇
= = + |λ

−
=

D
D

A
A

A B A B
det

det
tr( )

d
d

ln det( )I

I

I

I
I I I I

2 2
1

0

(5)

where we have introduced an operator-specific matrix which,
for the current example of the Laplacian, is the N × N matrix
(BI)ik = ∇2ϕk(ri) constructed from the orbitals occupied in AI.
In this paper, we show that the scaling O(Ne) per derivative

can be further improved to O(Ne) for any set of derivatives of
Ψ and EL. The core observation is that the determinantal part
Φ is a function of the matrix elements Ãij, and that any deriva-
tive of Φ can be computed using a simple trace formula
involving the matrix Γ defined as the logarithmic gradient of
Φ with respect to Ã. The first derivatives of the local energy
∂μEL can then be expressed as traces involving Γ and one of
its derivative ∂λΓ: many derivatives of Ψ and EL are obtained
efficiently because the matrices Γ and ∂λΓ are computed only
once for the whole set of parameters {μ}. Consequently, the
calculation of all derivatives of E with respect to all parameters
of the wave function (Jastrow parameters, orbital coefficients,
the coefficients of the expansion {cI}, and all nuclear positions)
has now the same scaling as the calculation of E alone, opening
the path to full optimization of large multideterminant expansions.
In the next section, we outline the main idea and introduce

the matrix Γ. In section 3, we present a formula to compute Γ
at a cost O(N3) + O(Ne) and, in section 4, discuss the formulas
for the second derivatives of Φ and, specifically, the first
derivatives of EL. In section 5, we demonstrate the scaling of the
computation of interatomic forces with multideterminant wave
functions on polyenes up to C60H62 and, in the last section,
apply the scheme to the optimization of multideterminant wave
functions and geometries of butadiene and octatetraene.

2. DERIVATIVES OF THE DETERMINANTAL EXPANSION
In general, one needs to compute many derivatives of Φ with
respect to different parameters of Ã. These parameters can be
the electron coordinates, nuclei coordinates, orbital coefficients,
basis-function parameters, and so on. The derivative of Φ with
respect to a given parameter μ in Ã is obtained from the chain rule

∂ Φ = ∂ Φ
∂ ̃ ∂ ̃ = Γ∂ ̃μ μ μA

A Aln( )
ln( )

tr( )
ij

ij
(6)

where a summation on repeated indices is implied and we have
introduced Γ, that is, the gradient of ln(Φ) with respect to the
matrix elements of Ã

Γ = ∂ Φ
∂Ã
ln

ji
ij (7)

The trace formula 6 is at the core of greater efficiency in comput-
ing many derivatives ofΦ because the N × Norb matrix Γ depends
only on Ã and not on ∂μÃ. For a given configuration R in the
Monte Carlo sample, Γ is computed only once for the entire set
of derivatives. In addition, Γ can be evaluated efficiently, at a cost
O(N3) + O(Ne) as we will see in the next section. Once Γ is com-
puted and stored, any new derivative ∂μ ln(Φ) requires calculating
besides ∂μ Ã the trace (6) at a cost O(Norb × N). What is impor-
tant here is that this scaling is independent of Ne and leads to vast
improvements over previous methods3,4 when Ne and the number
of derivatives are large.
Finally, also quantities such as the local energy or the value of

the wave function after one electron move, can be computed
using this trace formula 6. This is because one-body operators
can be also expressed as first-order derivatives of ln Φ when
applied to a Jastrow−Slater expansion.3

3. EFFICIENT EVALUATION OF THE MATRIX Γ
3.1. Convenient Expression for Φ. The determinants of

the Slater matrices AI can be computed efficiently because AI
usually differs by a few columns from the reference Slater
matrix A0. For example, let A0 be the 4 × 4 Slater matrix built
with the orbitals ϕ1, ϕ2, ϕ3, ϕ4:

= ̃ ̃ ̃ ̃A A A A A( )0 1 2 3 4 (8)

where the notation Ãi stands for the ith column of Ã. The Slater
matrix of a double excitation (3, 4) → (5, 7) is

= ̃ ̃ ̃ ̃A A A A A( )I 1 2 5 7 (9)

which differs from A0 only in the 2 last columns. Hereafter we
will drop the subscript “0” of the reference Slater matrix to
simplify the notation. The determinant of AI is

= −A A A Adet( ) det( ) det( )I I
1

and

= ̃ ̃ ̃ ̃ ̃

=

̃ ̃

̃ ̃

̃ ̃

̃ ̃

− − − − −

− −

− −

− −

− −

⎛

⎝

⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟

A A A A A A A A A A

A A A A

A A A A

A A A A

A A A A

( )

1 0 ( ) ( )

0 1 ( ) ( )

0 0 ( ) ( )

0 0 ( ) ( )

I
1 1

1
1

2
1

5
1

7

1
15

1
17

1
25

1
27

1
35

1
37

1
45

1
47 (10)

where a column of the identity matrix arises whenever AI and A
share the same column. The determinant of A−1 AI is readily
evaluated:

=
̃ ̃

̃ ̃
−

− −

− −

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟A A

A A A A

A A A A
det( ) det

( ) ( )

( ) ( )
I

1
1

35
1

37

1
45

1
47 (11)

More generally, the determinant of A−1AI for a kI
th-order

excitation is the determinant of a kI × kI submatrix. Such a
submatrix can always be written as follows

α = ̃−P A AQI I
T

I
1

(12)

where, in our example,

=

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟
P

0 0
0 0
1 0
0 1

I

(13)
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and

=

⋮ ⋮

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

Q

0 0
0 0
0 0
0 0
1 0
0 0
0 1
0 0

I

(14)

In general, PI is such that A PI are the columns of A which differ
from those of AI, and QI is such that ÃQI = AI PI. In other
words PI (applied on the right of A) selects the columns of
A from which excitations are built, and QI (applied on the right
of Ã) selects the columns of Ã to which excitations are built.
To summarize, the expression

= ̃−A A P A AQdet( ) det( ) det( )I I
T

I
1

(15)

enables us to compute the determinant of a large N × N matrix
as the determinant of a small kI × kI submatrix of A−1Ã. This
expression can also be proven using the determinant lemma.3,4

Finally, the convenient expression for Φ to efficiently compute
Γ is

∑Φ = × ̃−A c P A AQdet( ) det( )
I

I I
T

I
1

(16)

3.2. Convenient Expression for Γ. Introducing the matrix
R such that A = ÃR, the expression for Φ in eq 16 is explicitly a
function of Ã. In particular, the summation on the right hand
side of eq 16

∑χ ≡ Φ = ̃−

A
c P A AQ

det( )
det( )

I
I I

T
I

1

(17)

is a polynomial function depending on the matrix elements of

≡ ̃ = ̃ ̃− −T A A AR A( )1 1
(18)

The order of this polynomial is the order of the highest-order
excitation. It is usually low (typically kI < 4). Applying the chain
rule and using the convention of summation over repeated
indices, we obtain

χ
χ

∂ Φ = ∂ + ∂

= ∂ + ∂
∂

∂

= ∂ + ∂

μ μ μ

μ μ

μ μ

−

−

A

A A
T

T

A A Y T

ln( ) ln det( ) ln

tr( )
ln

tr( ) tr( )

ij
ij

1

1
(19)

where

χ
χ

χ≡ ∂
∂

= ∂
∂

Y
T T

ln 1
ji

ij ij (20)

It is simple to show that

∑χ α α∂
∂

=
>

−

T
c Q Pdet( )( )

ij I

N

I I I I I
T

ji
0

1
e

(21)

The derivative of T is given by

∂ = − ∂ ̃ + ∂ ̃μ μ μ
− − −T A AA A A A1 1 1

(22)

Finally, writing A = Ã R and using the cyclic property of the
trace, we obtain

∂ Φ = Γ∂ ̃μ μAln( ) tr( ) (23)

where

Γ = + − ̃ = − ̃ +− − − − −RA RA A YA R A AY Y A(1 ) [ (1 ) ]1 1 1 1 1

(24)

For example, if the occupied orbitals are the N first ones, the
matrix Γ is

Γ =
− ̃− − −

−

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

A A AYA

Y A

1 1 1

virt
1

(25)

where the first line is a N × N matrix. The second line is a
(Norb − N) × N matrix where Yvirt represents the nonzero lines
of Y, that is, the last Nvirt ≡ Norb − N lines.

3.3. One-Body Operators and First-Order Derivatives
of Φ. First-order derivatives of Φ can be computed with the
trace formula 6 which involves the Γ matrix. One-body oper-
ators acting on the wave function can be also expressed as first-
order derivatives of ln Φ when applied to a Jastrow−Slater
expansion as we have shown in ref 3 and briefly recalled for the
Laplacian in eq 5. The local energy can also be written as a first-
order logarithmic derivative of the determinantal part where Ã
has been replaced by

λ̃ = ̃ + ̃λA A B (26)

and B̃ is an appropriate matrix depending on the orbitals, the
Jastrow factor, and their derivatives. In particular, the reference
Slater determinant A has been replaced by Aλ = A + λB. The
determinantal part of the wave function is now

∑Φ = ̃λ λ λ
−A c P A A Qdet( )[ det( )]

I
I I

T
I

1

(27)

From this expression, one can compute the local energy

= ∂ Φ = Γ ̃λE B(ln ) tr( )L (28)

In the presence of the Jastrow factor, one recovers the same
trace expression for the local energy of Ψ but with a matrix B̃
also depending on J (R) and its derivatives.3

4. SECOND-ORDER DERIVATIVES
The second derivative of Φ can be written in terms of Γ and its
derivative as

∂ ∂ Φ = ∂ Γ∂ ̃ = Γ∂ ̃ + ∂ Γ∂ ̃λ μ λ μ λμ λ μA A Aln( ) tr( ) tr( ) tr( ) (29)

Example of the Derivative of the Local Energy. When
computing improved estimators of derivatives of the energy E,
we need also the derivatives of the local energy EL. It follows
from eq 28 that the derivative of the local energy with respect
to a given parameter μ is

∂ = ∂ ∂ Φ = Γ∂ ̃ + ∂ Γ∂ ̃μ λ μ μ λ μE B Aln( ) tr( ) tr( )L (30)

The order of the derivatives has been chosen so that Ã and not
Γ is differentiated with respect to μ. Consequently, the matrix
∂λΓ does not depend on the parameter μ and has to be com-
puted only once, whatever the number of second derivatives we
need. Once ∂λΓ has been computed, the calculation of ∂μEL
involves (besides ∂μÃ and ∂μB̃) two traces which can be com-
puted at a cost O(NNorb). Importantly, such a calculation does
not depend on Ne in contrast to what was presented in ref 3.
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Efficient Calculation of ∂λΓ. The derivative of Γ is

∂ Γ = −Γ + ∂ + ∂ + ∂λ λ λ λ
−B Y R TY T Y A[ ( )] 1

(31)

where

∂ = ̃ − ≡ ̃λ
−T A B BT M( )1

(32)

Applying the chain rule, we obtain

∂ = ̃λY Z Mji ijkl kl (33)

where

χ≡ ∂
∂ ∂

Z
T T

ln
ijkl

ij kl

2

(34)

χ
χ= ∂

∂ ∂
−

T T
Y Y

1

ij kl
ji lk

2

(35)

It follows from eq 21 that

∑χ α α α

α α

∂
∂ ∂

=

−
>

− −

− −

T T
c Q P Q P

Q P Q P

det( )[( ) ( )

( ) ( ) ]

ij kl I

N

I I I I I
T

ji I I I
T

lk

I I I
T

jk I I I
T

li

2

0

1 1

1 1

e

(36)

We can compute the derivatives of χ avoiding the evaluation of
inverse matrices. That will be presented in the appendix.
Derivatives with Respect to the Linear Coefficients.

The derivatives of a local quantity with respect to the expansion
coefficients require instead to evaluate the action of the one-
body operator on each excited determinant AI separately
(eq 15). For instance, as we have shown in ref 3, the derivative
of the local energy with respect to cI is given by

α

α

∂ = ∂ ∂ Φ

=
Φ

∂

=
Φ

∂

=
Φ

̃

λ

λ

λ
−

−

E

A
P TQ

A
P TQ

A
P MQ

(ln )

det( )
det( )

det( )
tr( )

det( )
tr( )

c L c

I
T

I

I I
T

I

I I
T

I

1

1

I I

(37)

These quantities are needed in the optimization of the energy
with respect to the linear coefficients and can be computed at a
cost O(Ne).

5. NUMERICAL SCALING
In practice, for each step of the Monte Carlo algorithm, we
need to compute Ã, A−1, and T = A−1Ã at a cost of at most
O(N3) (products and inversions of matrices). Then, we need to
calculate the first and second derivatives of χ with respect to T
(eqs 21 and 36) at a cost O(Ne) (a few sums and products for
each excitation). The related tensors Y and Z are also computed
at a cost O(Ne). ∂λY is computed at a cost O(Nd) where Nd
is the total number of double excitations involved in any
kIth order excitation (kI ≥ 2), where of course Nd < Ne. Finally,
Γ and ∂λΓ are computed at a cost O(N3) (product of matrices).
In particular, computing the 3Natoms components of the inter-

atomic forces with improved estimators has a scaling

+ + +O N O N N O N NN O N( ) ( ) ( ) ( )e
3 2

atoms atoms virt (38)

Assuming that Nvirt = O(N) = O(Natoms), this scaling simplifies

+O N O N( ) ( )e
3

(39)

This is significantly more efficient than the scaling O(N3) + O(N2

Nvirt Natoms) + O(Ne Natoms) (or O(N3) + O(N2 Nact Natoms) +
O(Ne Natoms)) presented in our previous work,3 in the large Ne,
Natoms or N, Natoms, Nvirt regimes. The term O(N2 NactNatoms) is
no more present because here we avoid computing ∂μT.
Regarding the sampling process, when one-electron moves are
used (see appendix), the total numerical cost for a full sweep
(all the electrons are moved once) is ∼O(N3) + O(NNe).
In Figure 1, we demonstrate this favorable scaling in the varia-

tional Monte Carlo (VMC) computation of the interatomic

forces for multideterminant Jastrow−Slater wave functions using
the sequence of molecules CnHn+2 with n between 4 and 60.
For each system, the ratio of the CPU time of computing all
interatomic forces to the time of evaluating only the energy is
initially constant and then decreases when the number of deter-
minants exceeds about 100. For the largest C60H62, computing
all interatomic gradients costs less than about 3 times a VMC
simulation where one only evaluates the total energy. Finally, as
shown in the Appendix, if we move one electron, many quan-
tities can be updated so that, for each Monte Carlo step, the
scaling is reduced to O(N2) + O(Ne). This leads to an overall
scaling O(N3) + O(Ne N) when all the electrons have been moved.
For an all-electron-move algorithm, the scaling is O(N3) + O(Ne)
which could be more efficient when Ne is large.

6. NUMERICAL RESULTS
We demonstrate the formulas above on the ground-state structural
optimization in VMC of butadiene (C4H6) and octatetraene
(C8H10) using large expansions in the determinantal com-
ponent of the Jastrow−Slater wave function. All expansion
coefficients, orbital and Jastrow parameters in the wave function
are optimized together with the geometry. Given the large
number of variational parameters (up to 58 652) we employ the
stochastic reconfiguration optimization method8 in a conjugate
gradient implementation9 which avoids building and storing
large matrices. We find that the simple conditioning of the
overlap matrix introduced in ref 8 gives sufficient stability for
all the cases considered here. In most of our calculations, to
remove occasional spikes in the forces, we use an improved
estimator of the forces obtained by sampling the square of a
modified wave function close to the nodes.10 To optimize the

Figure 1. Ratio of the CPU time for a VMC calculation of the forces
to the CPU time for the same simulation of the energy alone for the
sequence of molecules CnHn+2 with n between 4 and 60 and an increasing
number of determinants in the Jastrow−Slater wave function. The forces
are calculated after moving all the electrons once.
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geometry, we simply follow the direction of steepest descent
and appropriately rescale the interatomic forces. We employ
the CHAMP code11 with scalar-relativistic energy-consistent
Hartree−Fock pseudopotentials and the corresponding
cc-pVXZ12,13 and aug-cc-pVXZ14 basis sets with X = D, T,
and Q. The Jastrow factor includes two-body electron−electron
and electron−nucleus correlation terms.15 The starting determi-
nantal component of the Jastrow−Slater wave functions before
optimization is obtained in multiconfiguration-self-consistent-
field calculations performed with the program GAMESS(US).16,17

We first focus on the VMC geometrical optimization of buta-
diene. Despite its small size and apparent simplicity, predicting
the bond length alternation (BLA) of butadiene remains a
challenging task for quantum chemical approaches which lead
to a spread of BLA values, mainly clustered around either 0.115
or 0.125 Å (see Table 2 in ref 19 for a recent compilation of
theoretical predictions). In particular, Barborini and Guidoni19

using VMC in combination with Jastrow-antisymmetrized
geminal power (JAGP) wave functions find a best BLA value
of 0.1244(6) Å, rather close to the BLA of 0.1251(7) Å they
obtain using a single-determinant Jastrow−Slater wave function
and clearly distinct from the CCSD(T) prediction of 0.116 Å
computed in the complete basis set (CBS) limit and corrected
for core−valence correlation, scalar-relativistic effects, and
inclusion of quadruples.18

Here we explicitly address the relevance of the multireference
character of the system, considering various expansions which
correlate the π and σ electrons: (a) a single determinant;
(b) the complete-active-space CAS(4,4), CAS(4,16), and
CAS(4,20) expansions (20, 7232, and 18100 determinants,
respectively) of the four π electrons in the bonding and
antibonding π orbitals constructed from the 2pz, 3pz, 3dxz, 3dyz,
and 4pz atomic orbitals; (c) a CAS(10,10) correlating the six
σ and four π electrons of the carbon atoms in the corre-
sponding bonding and antibonding π and σ orbitals (15 912
determinants); (d) the same CAS(10,10) expansion augmented
with single and double excitations in the external space of 12 π
orbitals and truncated with a threshold of 2 × 10−4 on the
coefficients of the spin-adapted configuration state functions.
This last choice results in a total of 45 644 determinants and is
denoted as a restricted-active-space RAS(10,22) expansion.
We start all runs from the same geometry and, after conver-

gence, average the geometries over an additional 30−40 itera-
tions. The results of these structural optimizations are
summarized in Figure 2. We find that the basis sets of triple-
and quadruple-ζ quality yield values of BLA which are com-
patible within 1−1.5 standard deviations, namely, to better than
5 × 10−4 Å. The further addition of augmentation does not
change the BLA as shown in the one-determinant case. In the
following, we therefore focus on the cc-pVQZ bond lengths and
BLA values of butadiene, which are summarized in Table 1.
With a one-determinant wave function (case a), we obtain

a BLA of 0.1303(2) Å, which is higher than the value of
0.1251(6) Å reported in ref 19, possibly due to their use of
a basis set of quality inferior to triple-ζ. Moving beyond a single
determinant, we observe a strong dependence of the result on
the choice of active space. The inclusion of π−π correlation
within 4, 16, and 20 π orbitals (case b) significantly decreases
the BLA with respect to the one-determinant case with the
CAS(4,16) and CAS(4,20) expansions yielding a BLA of
0.117 Å in apparent agreement with the CCSD(T)/CBS esti-
mate of 0.116 Å. Accounting also for σ−π and σ−σ correlations
in a CAS(10,10) (case c) leads however to a more substantial

lengthening of the single than the double bond and a conse-
quent increase of BLA. Finally, allowing excitations out of the
CAS(10,10) in 12 additional π orbitals (case d) brings the
double bond in excellent agreement with the CCSD(T)/CBS
value and somewhat shortens the single bond, lowering the
BLA to a final value of 0.119 Å. In summary, all choices of
multideterminant expansion in the Jastrow−Slater wave func-
tion represent a clear improvement with respect to the use of a
single determinant, significantly lowering the value of BLA.
Finally, in Figure 3, we demonstrate the ability of our method

to optimize the structure and the many wave function param-
eters for the larger molecule C8H10 when using a very large
determinantal expansion. For this purpose, we employ the
simple cc-pVDZ basis set and consider all single, double, and
triple excitations in an expansion denoted as SDT(22,22),
correlating 22 electrons in the 22 σ and π orbitals obtained
from the carbon valence atomic orbitals. The wave function
comprises a total of 201 924 determinants and 58 652 param-
eters. To illustrate the dependence of the energy on the choice
of wave function, we also display the energy of a structural
optimization of the same molecule with the minimal CAS(8,8)
expansion over the π orbitals. At each iteration, we update both
the wave function parameters and the atomic positions, the
former with one step of the stochastic reconfiguration method
and the latter along the downhill direction of the interatomic
forces. The energy of the SDT(22,22) wave function is dis-
tinctly lower than the one obtained with the smaller active
space and converged to better than 2 mHartree within about
80 iterations. The structural parameters converge much faster
and reach stable values within the first 30 iterations.

7. CONCLUSION
In the past few years, a series of methodological advances3,4,20

has enabled the use of large multideterminant wave functions
in real-space quantum Monte Carlo. In this work, we take a
further step forward, reducing the scaling of the computational
cost to obtain all the derivatives of both the trial function and
the local energy. These are for instance needed in the low-
variance estimators entering the optimization of the wave func-
tion and the structural parameters. This progress, described in
sections 5 and 6, is here summarized in Table 2. We believe

Figure 2. Bond-length alternation (BLA) of C4H6 optimized in VMC
for different basis sets and choices in the determinantal part of the
Jastrow−Slater wave function. The atomic positions and all parameters
of the wave function (expansion coefficients, orbital and Jastrow
parameters) are simultaneously optimized. The CCSD(T) BLA in the
CBS limit computed with various corrections18 and the best value
obtained with a Jastrow-antisymmetrized geminal power (JAGP)19 are
reported.
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that the possibility of optimizing molecular geometries and all
the variational parameters in very large expansions for medium-
size molecules will stimulate more extensive applications of
real-space quantum Monte Carlo methods.

■ A. EFFICIENT CALCULATION OF Z, Y, AND χ
We demonstrate here that we do not need to compute explicitly
the inverses of the submatrices αI as in eqs 17 22, and 36 or
in refs 3 and 4 to obtain χ and its derivatives. These can be
computed efficiently using recursion formulas.
Suppose that χ contains only third-order excitations (the

generalization to an arbitrary order is straightforward). Let us
rewrite the expression of χ (eq 17) as

∑ ∑χ = −
< < < <

C T T T( 1)
i i i j j j

i i i j j j
p

p
i p j i p j i p j

,
( ) ( ) ( )

1 2 3 1 2 3

1 2 3 1 2 3 1 1 2 2 3 3
(40)

where p stands for a permutation of the indices (j1, j2, j3), and
(−1)p is the sign of the permutation. We note that this formula
can also include first- and second-order excitations: a second-
order excitation (i1 → j1, i2 → j2) can be written as (i1, → j2, i2
→ j2, i3 → i3), and a first-order excitation (i1 → j1) as (i1, → j1,
i2 → i2, i3 → i3).
The starting point is that the tensor of second derivatives can

be computed directly from the expression 40 as

∑χ∂
∂ ∂

= − +

T T
C T( 1)

i j i j i j

p q
p i q j p i q j p i q j i j

2

( ) ( ) ( ) ( ) ( ) ( )
1 1 2 2 3 3

1 1 2 2 3 3 3 3
(41)

where p and q are the permutations ordering (i1,i2,i3) and
(j1,j2,j3), respectively. Note that this tensor is antisymmetric
with respect to the permutations of either the indices (i1,i2) or
the indices (j1,j2), and we only need to compute and store the
elements such that i1 < i2 and j1< j2. The tensor of first order
derivatives is

∑χ χ∂
∂

= ∂
∂ ∂T T T

T
1
2i j i j i j i j

i j

2

1 1 2 2 1 1 2 2

2 2
(42)

and the value of χ is

∑χ χ= ∂
∂T

T
1
3 ij ij

ij
(43)

In practice, sparse representations of these tensors should be
used. The formula 41 involves at most nine products and nine
sums per excitation. The formulas 42 and 43 require less than
N2Norb

2 and NNorb operations (additions or multiplications),
respectively. The method still scales like O(Ne) but with a
reduced prefactor because no divisions are involved and the
number of operations is smaller. For example, expression 43
involves at most NNorb multiplications and additions whereas
(17) is a sum on Ne terms (Ne can be of order N3Norb

3 if third-
order excitations are included).

■ B. ONE-ELECTRON-MOVE ALGORITHMS
To sample the density Ψ2, we use the Metropolis−Hastings
method22,23 which is a stochastic dynamics in the space of
configurations R = (r1, r2...rN). For a given iteration, this
method proposes a random move R → R′ with a transition
probability density P(R→ R′). The proposed move is accepted
with the probability

Ψ ′
Ψ

′ →
→ ′

⎛
⎝⎜

⎞
⎠⎟

P
P

R
R

R R
R R

min
( )
( )

( )
( )

, 1
2

2 (44)

Table 1. Optimal Bond Lengths and BLA Values (Å) of Butadiene Computed in VMC with the cc-pVQZ Basis Set and Various
Choices of Jastrow−Slater Expansions. The Numbers of Determinants and Optimized Parameters in the Wave Function Are
Listed

expansion no. det no. param. C−C CC BLA (Å)

1 det 1 1404 1.45513(12) 1.32482(05) 0.13031(16)
CAS(4,4) 20 1547 1.45211(10) 1.33347(07) 0.11865(15)
CAS(4,16) 7232 4995 1.45160(15) 1.33422(13) 0.11738(16)
CAS(4,20) 18100 9147 1.45143(16) 1.33409(07) 0.11734(24)
CAS(10,10) 15912 6890 1.45858(09) 1.33694(06) 0.12163(13)
RAS(10,22) 45644 11094 1.45705(17) 1.33760(15) 0.11945(29)
CCSD(T)/CBSa 1.4548 1.3377 0.1171
CCSD(T)/CBS-corrb 1.4549 1.3389 0.1160

aReference 18. bReference 18 including a CCSDT(Q)(FC)/cc-pVDZ correction.

Figure 3. Total energy for a VMC geometry optimization of C8H10
using two different expansions in the Jastrow−Slater wave function,
that is, a full CAS(8,8) with 2468 determinants, and all single, double,
and triple excitations in an expansion correlating 22 electrons in 22
orbitals for a total of 201 924 determinants. The atomic positions and
all parameters of the wave function (expansion coefficients, orbital and
Jastrow parameters) are simultaneously optimized.

Table 2. Dominant Scaling in the Number of Determinants
Ne To Compute the Matrix Updates in the Sweep over the
Electrons, EL, and One or M Derivatives of Ψ and EL

a

∂μΨ ∂μ∂νΨ, ∂μEL

sweep EL 1 M 1 M

SMF < 201121 N3 Ne N3 Ne

ref 4 NNe NNe

ref 3 NNe Ne Ne M Ne Ne M Ne

this work NNe Ne Ne Ne Ne Ne

aWe also compare with the standard algorithm using the Sherman
Morrison formula (SMF).
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If only one electron is moved (here the first, for example), the
new configuration is R′ = (r1′, r2, ..., rN). The new extended
Slater matrix Ã′ differs from Ã only in the first line.
We introduce the matrix B̃e such that the first line of B̃e and

Ã′ are the same but B̃e is zero elsewhere. Since Φ is a linear
function of the modified line

Φ ′
Φ

= ∂ Φ ̃λ A
R
R

( )
( )

ln ( )
(45)

where we considered the following transformation Ã → Ã +
λB̃e. Using eq 19, we obtain

Φ ′
Φ

= ∂ + ∂λ λ
−A A Y T

R
R

( )
( )

tr( ) tr( )1

(46)

where we recall that T = A−1Ã and ∂λT = A−1B̃e − A−1BeT.
The cost of this calculation is O(NNorb) ∼ O(N2). When the
first electron has been moved, T can be updated using the
Sherman Morrison formula at a cost O(NNorb),

3 and Y which
depends on T can be again computed at a cost O(Ne). The total
cost for a sweep (each electron has moved once) is O(N2Norb) +
O(NNe). The matrix Γ and all derivatives are computed after
each sweep.
We note that, if one uses instead the expression involving Γ

to update the wave function,

Φ ′
Φ

= Γ ̃B
R
R

( )
( )

tr( )e
(47)

one would need to update Γ at each Monte Carlo step and
incur the higher cost of O(N4) + O(NNe) for a full sweep.
This is because updating Γ requires the calculation of ∂λΓ given
in eq 31, where of course B̃ is replaced by B̃e. In this equation,
the product (∂λY)A

−1 scales like O(N3), unless Y is sparsely
modified after one electron move (i.e., a few double excitations
are involved).
Finally, also in the calculation of the drift of a single electron

∇i Φ/Φ needed in the Monte Carlo sampling, it is better not
to recompute Γ but to use formula 46 with ∂λT = A−1B̃e

drift −
A−1Be

driftT, where the matrix B̃e
drift is zero except the ith row

which equals ∇ϕj(ri). However, if the sampling is modified to
use a finite distribution at the nodes following ref 10, the full
drift has to be computed at each step. The resulting scaling is
O(N4) + O(NNe) per sweep, using eq 46 or 47 alike.

■ C. SIMPLE EXPRESSION OF Γ FOR A
JASTROW−SLATER EXPANSION

Here, we provide a simple (though not efficient) expression for
Γ and some mathematical properties.

Simple Expression for Γ
The determinantal contribution of the wave function written in
eq 3 is

∑Φ =
=

c Adet( )
I

N

I I
0

e

where AI is a list of N columns of the N × Norb generalized
Slater matrix Ã. We can then define a Norb × N matrix RI such
that

= ̃A ARI I (48)

which gives an explicit expression of Φ as a function of Ã

∑Φ ̃ = ̃A c AR( ) det( )
I

I I
(49)

For example, given a 3 × 3 Slater matrix built on the orbitals
(ϕ1,ϕ3, ϕ4)

=

⋮ ⋮

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟

R

1 0 0
0 0 0
0 1 0
0 0 1
0 0 0

I

The derivative of the determinantal expansion with respect to a
parameter μ is

∑

∑

∂ Φ = ∂

= ∂ ̃

μ μ

μ

−

−

c A A A

c A A AR

det( ) tr( )

det( ) tr( )

I
I I I I

I
I I I I

1

1

Using the linearity and the cyclic properties of the trace, we find

∂ Φ
Φ

= Γ∂ ̃μ
μAtr( )

(50)

where we can identify Γ

∑Γ =
Φ

−c A R A
1

det( )
I

I I I I
1

(51)

In expression 51, the application of RI on the left of AI
−1

dispatches the N lines of AI
−1 in a larger Norb × N matrix. Of

course, a direct evaluation of expression 51 would be O(Ne N
3)

and would be too costly.
Properties of the matrix Γ
Γ is a right inverse of Ã, that is,

̃Γ =A IN (52)

where IN is the identity matrix of order N. The proof is simple

∑̃Γ =
Φ

̃ −A c A AR A1
det( )

I
I I I I

1

(53)

∑=
Φ

=−c A A A I1
det( )

I
I I I I N

1

(54)

We now consider the Norb × Norb matrix ΓÃ and resort to the
transformation ϕi →ϕi + μijϕj. The only non-zero column of
the matrix ∂Ã/∂μij is the ith column, which is the same as the
jth column of Ã. Therefore,

μ μΦ
∂Φ
∂

= Γ ∂ ̃
∂

= Γ ̃
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

A A1
tr ( )

ij ij
ij

(55)

meaning that Φ(ΓÃ)ij is the new value of the determinantal
expansion when the orbital i has been replaced by the orbital j

∑Φ Γ ̃ = →A c A( ) det( )ij
I

I I
i j

(56)

In particular, if i = j,

∑Φ Γ ̃ =
ϕ ∈

A c A( ) det( )ii
I A

I I
/ i I (57)

In other words, the main diagonal of ΦΓÃ is made of restric-
tions of the summation in eq 3 to determinants containing

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.7b00648
J. Chem. Theory Comput. 2017, 13, 5273−5281

5279

http://dx.doi.org/10.1021/acs.jctc.7b00648


a given orbital. As a by-product, if ϕi is common to all the
determinants of the expansion, (ΓÃ)ii is equal to 1. If i ≠ j,
Φ(ΓÃ)ij is the expansion (3) restricted to Slater determinants
occupied by ϕi and not by ϕj

∑Φ Γ ̃ =
ϕ ∈ Φ ∉

→A c A( ) det( )ij
I A A

I I
i j

/ ,i I j I (58)

In particular, if the orbital j is common to all determinants,
(ΓÃ)ij = 0. In conclusion, if there are Nact orbitals which can be
excited (i.e. there are N − Nact orbitals common to all deter-
minants), the following property holds: ΓÃ contains a Norb ×
(N − Nact) block which is zero with the exception of a
(N − Nact) × (N − Nact) square sub-block which is the identity
matrix.

■ D. CALCULATION OF Γ USING THE
SHERMAN−MORRISON−WOODBURY FORMULA

Here, we derive expression 24 directly from the identity (eq 51)
using the Sherman−Morrison−Woodbury formula. The
algebra is a bit more tedious. First, we recall some notations
useful to explicit the matrix RI and dependencies on Ã. A is the
reference Slater matrix and R is the matrix which selects the
columns Ã from which A is made

= ̃A AR (59)

PI is the matrix such that API is the list of the kI columns of
A which differ from those of AI (see for example eq 13).
The N × N matrix PIPI

T is a diagonal matrix: if i is the index of a
column which differs in A and AI, (PI PI

T)ii = 1, while (PI PI
T)ii = 0

otherwise. Consequently, the identity

− = −A A A A P P( )I I I I
T

(60)

holds. The list of excited orbitals are the columns of AIPI and
can be selected from Ã with the aid of the Norb × kI matrix QI
such that

= ̃A P AQI I I (61)

as in the example eq 14. With these definitions

= + − = ̃ + −A A A A P P A R Q RP P( ) ( ( ) )I I I I
T

I I I
T

(62)

and the matrix RI which selects the columns Ã from which AI, is
given by

= + −R R Q RP P( )I I I I
T

(63)

Now, writing AI = A + (AI − A)PIPI
T and applying the

Sherman−Morrison−Woodbury formula, we obtain

= − − + −

= − −

− − − − − −

− − − − −

A A A A A P P A A A P P A

A A A A P P A A P P A

( ) (1 ( ) )

( ) ( )
I I I I

T
I I I

T

I I I
T

I I I
T

1 1 1 1 1 1

1 1 1 1 1
(64)

so that

α α= + − ̃− − − − − − −A A P P A A AQ P AI I I I
T

I I I
T1 1 1 1 1 1 1

(65)

where we have introduced

α ≡ ̃−P A AQI I
T

I
1

(66)

Multiplying both sides of eq 65 by PI
T gives the following

identity

α α= =− − − − −P A P P P A P AI
T

I I
T

I I I
T

I I
T1 1 1 1 1

(67)

Using this expression, we can simplify

α

α α

α

= + −

= − ̃ +

= + − ̃

− − − −

− − − − − −

− − − −

R A RA Q RR P A

RA RA AQ P A Q P A

RA RA A Q P A

( )

(1 )

I I I I I I I
T

I I I
T

I I I
T

I I I
T

1 1 1 1

1 1 1 1 1 1

1 1 1 1
(68)

From eqs 68 and 51, we then obtain

Γ = + − ̃− − −RA RA A YA(1 )1 1 1
(69)

with

∑ α α≡
Φ

−Y
A

c Q P
det( )

det( )
I

I I I I I
T1

(70)

and, of course,

∑ αΦ =
=

A cdet( )( det( ))
I

N

I I
1

e

(71)
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