12 research outputs found

    Aerosol optical depth retrieval from the EarthCARE Multi-Spectral Imager: the M-AOT product

    Get PDF
    The Earth Explorer mission Earth Clouds, Aerosols and Radiation Explorer (EarthCARE) will not only provide profile information on aerosols but also deliver a horizontal context to it through measurements by its Multi-Spectral Imager (MSI). The columnar aerosol product relying on these passive signals is called M-AOT (MSI-Aerosol Optical Thickness). Its main parameters are aerosol optical thickness (AOT) at 670 nm over ocean and valid land pixels and at 865 nm over ocean. Here, the algorithm and assumptions behind it are presented. Further, first examples of product parameters are given based on applying the algorithm to simulated EarthCARE test data and Moderate Resolution Imaging Spectroradiometer (MODIS) Level-1 data. Comparisons to input fields used for simulations, to the official MODIS aerosol product, to AErosol RObotic NETwork (AERONET) and to Maritime Aerosol Network (MAN) show an overall reasonable agreement. Over ocean, correlations are 0.98 (simulated scenes), 0.96 (compared to MYD04) and 0.9 (compared to MAN). Over land, correlations are 0.62 (simulated scenes), 0.87 (compared to MYD04) and 0.77 (compared to AERONET). A concluding discussion will focus on future improvements that are necessary and envisioned to enhance the product

    Aerosol-cloud-radiation interaction during Saharan dust episodes: The dusty cirrus puzzle

    Get PDF
    Dusty cirrus clouds are extended optically thick cirrocumulus decks that occur during strong mineral dust events. So far they have been mostly documented over Europe associated with dust-infused baroclinic storms. Since today's numerical weather prediction models neither predict mineral dust distributions nor consider the interaction of dust with cloud microphysics, they cannot simulate this phenomenon. We postulate that the dusty cirrus forms through a mixing instability of moist clean air with drier dusty air. A corresponding sub-grid parameterization is suggested and tested in the ICON-ART model. Only with help of this parameterization ICON-ART is able to simulate the formation of the dusty cirrus, which leads to substantial improvements in cloud cover and radiative fluxes compared to simulations without this parameterization. A statistical evaluation over six Saharan dust events with and without observed dusty cirrus shows robust improvements in cloud and radiation scores. The ability to simulate dusty cirrus formation removes the linear dependency on mineral dust aerosol optical depth from the bias of the radiative fluxes. This suggests that the formation of dusty cirrus clouds is the dominant aerosol-cloud-radiation effect of mineral dust over Europe.</p

    HETEAC: The Aerosol Classification Model for EarthCARE

    Get PDF
    We introduce the Hybrid End-To-End Aerosol Classification (HETEAC) model for the upcoming EarthCARE mission. The model serves as the common baseline for development, evaluation, and implementation of EarthCARE algorithms. It shall ensure the consistency of different aerosol products from the multi-instrument platform as well as facilitate the conform specification of broad-band optical properties necessary for the EarthCARE radiative closure efforts. The hybrid approach ensures the theoretical description of aerosol microphysics consistent with the optical properties of various aerosol types known from observations. The end-to-end model permits the uniform representation of aerosol types in terms of microphysical, optical and radiative properties

    Aerosol properties and aerosol–radiation interactions in clear sky conditions over Germany

    Get PDF
    The clear-sky radiative effect of aerosol-radiation interactions is of relevance for our understanding of the climate system. The influence of aerosol on the surface energy budget is of high interest for the renewable energy sector. In this study, the radiative effect is investigated in particular with respect to seasonal and regional variations for the region of Germany and the year 2015 at the surface and top of atmosphere using two complementary approaches. First, an ensemble of clear-sky models which explicitly consider aerosols is utilized to retrieve the aerosol optical depth and the surface direct radiative effect of aerosols by means of a clear sky fitting technique. For this, short-wave broadband irradiance measurements in the absence of clouds are used as a basis. A clear sky detection algorithm is used to identify cloud free observations. Considered are measurements of the shortwave broadband global and diffuse horizontal irradiance with shaded and unshaded pyranometers at 25 stations across Germany within the observational network of the German Weather Service (DWD). Clear sky models used are MMAC, MRMv6.1, METSTAT, ESRA, Heliosat-1, CEM and the simplified Solis model. The definition of aerosol and atmospheric characteristics of the models are examined in detail for their suitability for this approach. Second, the radiative effect is estimated using explicit radiative transfer simulations with inputs on the meteorological state of the atmosphere, trace-gases and aerosol from CAMS reanalysis. The aerosol optical properties (aerosol optical depth, Ångström exponent, single scattering albedo and assymetrie parameter) are first evaluated with AERONET direct sun and inversion products. The largest inconsistency is found for the aerosol absorption, which is overestimated by about 0.03 or about 30 % by the CAMS reanalysis. Compared to the DWD observational network, the simulated global, direct and diffuse irradiances show reasonable agreement within the measurement uncertainty. The radiative kernel method is used to estimate the resulting uncertainty and bias of the simulated direct radiative effect. The uncertainty is estimated to −1.5 ± 7.7 and 0.6 ± 3.5 W m−2 at the surface and top of atmosphere, respectively, while the annual-mean biases at the surface, top of atmosphere and total atmosphere are −10.6, −6.5 and 4.1 W m−2, respectively. The retrieval of the aerosol radiative effect with the clear sky models shows a high level of agreement with the radiative transfer simulations, with an RMSE of 5.8 W m−2 and a correlation of 0.75. The annual mean of the REari at the surface for the 25 DWD stations shows a value of −12.8 ± 5 W m−2 as average over the clear sky models, compared to −11 W m−2 from the radiative transfer simulations. Since all models assume a fixed aerosol characterisation, the annual cycle of the aerosol radiation effect cannot be reproduced. Out of this set of clear sky models, the largest level of agreement is shown by the ESRA and MRMv6.1 models

    Dataset for the publication: "Aerosol properties and aerosol-radiation interactions in clear sky conditions over Germany"

    No full text
    This  repository contains the data to reproduce the analysis conducted in the publication:  Witthuhn, J., Hünerbein, A., Filipitsch, F., Wacker, S., Meilinger, S., and Deneke, H., Aerosol properties and aerosol-radiation interactions in clear sky conditions over Germany

    EarthCARE Aerosol and Cloud Layer and Column Products

    Get PDF
    We introduce the development of EarthCARE Level 2 layer products derived from profile measurements of the high-spectral-resolution lidar ATLID and column products obtained from combined information of ATLID and the Multi-Spectral Imager (MSI). Layer products include cloud top height as well as aerosol layer boundaries and mean optical properties along the satellite nadir track. Synergistic column products comprise cloud top height, Ångström exponent, and aerosol type both along-track and across the MSI swath

    EarthCARE Aerosol and Cloud Layer and Column Products

    No full text
    We introduce the development of EarthCARE Level 2 layer products derived from profile measurements of the high-spectral-resolution lidar ATLID and column products obtained from combined information of ATLID and the Multi-Spectral Imager (MSI). Layer products include cloud top height as well as aerosol layer boundaries and mean optical properties along the satellite nadir track. Synergistic column products comprise cloud top height, Ångström exponent, and aerosol type both along-track and across the MSI swath
    corecore