190 research outputs found
Metallothionein in human oesophagus, Barrett's epithelium and adenocarcinoma
The potential of the metal-binding protein, metallothionein, in assessing the progression of normal oesophagus through Barrett's to adenocarcinoma was investigated. Metallothionein was quantitatively determined in resected tissues from patients undergoing oesophagectomy for high grade dysplasia/adenocarcinoma and in biopsies from patients with Barrett's syndrome. In 10 cancer patients, metallothionein concentrations in adenocarcinoma were not significantly different from normal oesophagus, although six had elevated metallothionein concentrations in the metaplastic tissue bordering the adenocarcinoma. In 17 out of 20 non-cancer patients with Barrett's epithelium, metallothionein was significantly increased by 108% (P<0.004). There was no association between the metallothionein levels in Barrett's epithelium and the presence of inflammatory cells, metaplasia or dysplasia. Metallothionein is a marker of progression from normal to Barrett's epithelium but is not increased in oesophageal adenocarcinoma
Lysozyme Resistance in Streptococcus suis Is Highly Variable and Multifactorial
Background: Streptococcus suis is an important infectious agent for pigs and occasionally for humans. The host innate immune system plays a key role in preventing and eliminating S. suis infections. One important constituent of the innate immune system is the protein lysozyme, which is present in a variety of body fluids and immune cells. Lysozyme acts as a peptidoglycan degrading enzyme causing bacterial lysis. Several pathogens have developed mechanisms to evade lysozyme-mediated killing. In the present study we compared the lysozyme sensitivity of various S. suis isolates and investigated the molecular basis of lysozyme resistance for this pathogen. Results: The lysozyme minimal inhibitory concentrations of a wide panel of S. suis isolates varied between 0.3 to 10 mg/ml. By inactivating the oatA gene in a serotype 2 and a serotype 9 strain, we showed that OatA-mediated peptidoglycan modification partly contributes to lysozyme resistance. Furthermore, inactivation of the murMN operon provided evidence that additional peptidoglycan crosslinking is not involved in lysozyme resistance in S. suis. Besides a targeted approach, we also used an unbiased approach for identifying factors involved in lysozyme resistance. Based on whole genome comparisons of a lysozyme sensitive strain and selected lysozyme resistant derivatives, we detected several single nucleotide polymorphisms (SNPs) that were correlated with the lysozyme resistance trait. Two SNPs caused defects in protein expression of an autolysin and a capsule sugar transferase. Analysis of specific isogenic mutants, confirmed th
On the Relationship between Sialomucin and Sulfomucin Expression and Hydrogenotrophic Microbes in the Human Colonic Mucosa
The colonic mucus layer is comprised primarily of acidomucins, which provide viscous properties and can be broadly classified into sialomucins or sulfomucins based on the presence of terminating sialic acid or sulfate groups. Differences in acidomucin chemotypes have been observed in diseases such as colorectal cancer and inflammatory bowel disease, and variation in sialo- and sulfomucin content may influence microbial colonization. For example, sulfate derived from sulfomucin degradation may promote the colonization of sulfate-reducing bacteria (SRB), which through sulfate respiration generate the genotoxic gas hydrogen sulfide. Here, paired biopsies from right colon, left colon, and rectum of 20 subjects undergoing routine screening colonoscopies were collected to enable parallel histochemical and microbiological studies. Goblet cell sialo- and sulfomucins in each biopsy were distinguished histochemically and quantified. Quantitative PCR and multivariate analyses were used to examine the abundance of hydrogenotrophic microbial groups and SRB genera relative to acidomucin profiles. Regional variation was observed in sialomucins and sulfomucins with the greatest abundance of each found in the rectum. Mucin composition did not appear to influence the abundance of SRB or other hydrogenotrophic microbiota but correlated with the composition of different SRB genera. A higher sulfomucin proportion correlated with higher quantities of Desulfobacter, Desulfobulbus and Desulfotomaculum, relative to the predominant Desulfovibrio genus. Thus, acidomucin composition may influence bacterial sulfate respiration in the human colon, which may in turn impact mucosal homeostasis. These results stress the need to consider mucus characteristics in the context of studies of the microbiome that target intestinal diseases
The Evolution of Pepsinogen C Genes in Vertebrates: Duplication, Loss and Functional Diversification
<div><h3>Background</h3><p>Aspartic proteases comprise a large group of enzymes involved in peptide proteolysis. This collection includes prominent enzymes globally categorized as pepsins, which are derived from pepsinogen precursors. Pepsins are involved in gastric digestion, a hallmark of vertebrate physiology. An important member among the pepsinogens is pepsinogen C (<em>Pgc</em>). A particular aspect of <em>Pgc</em> is its apparent single copy status, which contrasts with the numerous gene copies found for example in pepsinogen A (<em>Pga</em>). Although gene sequences with similarity to <em>Pgc</em> have been described in some vertebrate groups, no exhaustive evolutionary framework has been considered so far.</p> <h3>Methodology/Principal Findings</h3><p>By combining phylogenetics and genomic analysis, we find an unexpected <em>Pgc</em> diversity in the vertebrate sub-phylum. We were able to reconstruct gene duplication timings relative to the divergence of major vertebrate clades. Before tetrapod divergence, a single <em>Pgc</em> gene tandemly expanded to produce two gene lineages (<em>Pgbc</em> and <em>Pgc2</em>). These have been differentially retained in various classes. Accordingly, we find <em>Pgc2</em> in sauropsids, amphibians and marsupials, but not in eutherian mammals. <em>Pgbc</em> was retained in amphibians, but duplicated in the ancestor of amniotes giving rise to <em>Pgb</em> and <em>Pgc1</em>. The latter was retained in mammals and probably in reptiles and marsupials but not in birds. <em>Pgb</em> was kept in all of the amniote clade with independent episodes of loss in some mammalian species. Lineage specific expansions of <em>Pgc2</em> and <em>Pgbc</em> have also occurred in marsupials and amphibians respectively. We find that teleost and tetrapod <em>Pgc</em> genes reside in distinct genomic regions hinting at a possible translocation.</p> <h3>Conclusions</h3><p>We conclude that the repertoire of <em>Pgc</em> genes is larger than previously reported, and that tandem duplications have modelled the history of <em>Pgc</em> genes. We hypothesize that gene expansion lead to functional divergence in tetrapods, coincident with the invasion of terrestrial habitats.</p> </div
Glycophenotypic Alterations Induced by Pteridium aquilinum in Mice Gastric Mucosa: Synergistic Effect with Helicobacter pylori Infection
The bracken fern Pteridium aquilinum is a plant known to be carcinogenic to animals. Epidemiological studies have shown an association between bracken fern exposure and gastric cancer development in humans. The biological effects of exposure to this plant within the gastric carcinogenesis process are not fully understood. In the present work, effects in the gastric mucosa of mice treated with Pteridium aquilinum were evaluated, as well as molecular mechanisms underlying the synergistic role with Helicobacter pylori infection. Our results showed that exposure to Pteridium aquilinum induces histomorphological modifications including increased expression of acidic glycoconjugates in the gastric mucosa. The transcriptome analysis of gastric mucosa showed that upon exposure to Pteridium aquilinum several glycosyltransferase genes were differently expressed, including Galntl4, C1galt1 and St3gal2, that are mainly involved in the biosynthesis of simple mucin-type carbohydrate antigens. Concomitant treatment with Pteridium aquilinum and infection with Helicobacter pylori also resulted in differently expressed glycosyltransferase genes underlying the biosynthesis of terminal sialylated Lewis antigens, including Sialyl-Lewisx. These results disclose the molecular basis for the altered pattern of glycan structures observed in the mice gastric mucosa. The gene transcription alterations and the induced glycophenotypic changes observed in the gastric mucosa contribute for the understanding of the molecular mechanisms underlying the role of Pteridium aquilinum in the gastric carcinogenesis process
Effect of Dietary Zinc Oxide on Morphological Characteristics, Mucin Composition and Gene Expression in the Colon of Weaned Piglets
The trace element zinc is often used in the diet of weaned piglets, as high
doses have resulted in positive effects on intestinal health. However, the
majority of previous studies evaluated zinc supplementations for a short
period only and focused on the small intestine. The hypothesis of the present
study was that low, medium and high levels of dietary zinc (57, 164 and 2,425
mg Zn/kg from zinc oxide) would affect colonic morphology and innate host
defense mechanisms across 4 weeks post-weaning. Histological examinations were
conducted regarding the colonic morphology and neutral, acidic, sialylated and
sulphated mucins. The mRNA expression levels of mucin (MUC) 1, 2, 13, 20,
toll-like receptor (TLR) 2, 4, interleukin (IL)-1β, 8, 10, interferon-γ
(IFN-γ) and transforming growth factor-β (TGF-β) were also measured. The
colonic crypt area increased in an age-depending manner, and the greatest area
was found with medium concentration of dietary zinc. With the high
concentration of dietary zinc, the number of goblet cells containing mixed
neutral-acidic mucins and total mucins increased. Sialomucin containing goblet
cells increased age-dependently. The expression of MUC2 increased with age and
reached the highest level at 47 days of age. The expression levels of TLR2 and
4 decreased with age. The mRNA expression of TLR4 and the pro-inflammatory
cytokine IL-8 were down-regulated with high dietary zinc treatment, while
piglets fed with medium dietary zinc had the highest expression. It is
concluded that dietary zinc level had a clear impact on colonic morphology,
mucin profiles and immunological traits in piglets after weaning. Those
changes might support local defense mechanisms and affect colonic physiology
and contribute to the reported reduction of post-weaning diarrhea
Prognostic value of DNA flow cytometry in stomach cancer: a 5-year prospective study
The role of DNA flow cytometry in the prediction of prognosis for patients with stomach cancer remains to be defined. Thus we studied prospectively the role of DNA flow cytometry as a prognosis indicator in stomach cancer patients in a high-incidence area. Between November 1990 and December 1992, primary stomach cancer tissues were obtained from the surgical specimens from 217 patients (148 male, 69 female). DNA flow cytometric analyses of DNA ploidy and S-phase fraction were performed and the results were correlated with patient survival. The median age of the patients was 55 years (range 24–78). Aneuploid cell population was found in 114 of 217 samples (53%). Tumour S-phase fraction was obtained in 96 of 103 diploid tumours (93%) and 61 of 114 aneuploid tumours (54%). After median follow-up of 66.1 months, the patients with tumours with an S-phase fraction over 17% had significantly worse survival rates than patients with tumours with S-phase fractions of lower than 8% or 8–17% (45% vs 59% and 63% of patients surviving, P = 0.007). Tumour ploidy status did not correlate with patient survival. Multivariate analyses showed that the TNM stage remained the most important prognostic indicator. The tumour S-phase fraction was also an independent prognostic indicator (relative risk 2.300, 95% CI, 1.252–4.223). Tumour S-phase fraction obtained by DNA flow cytometry is an independent prognostic indicator for the survival of the patients with stomach cancer. © 1999 Cancer Research Campaig
Significance of glycolytic metabolism-related protein expression in colorectal cancer, lymph node and hepatic metastasis
Background: Colorectal cancer (CRC) is one of the most common malignancies and a leading cause of cancer death worldwide. Most cancer cells display high rates of glycolysis with production of lactic acid, which is then exported to the microenvironment by monocarboxylate transporters (MCTs). The main aim of this study was to evaluate the significance of MCT expression in a comprehensive series of primary CRC cases, lymph node and hepatic metastasis.
Methods: Expressions of MCT1, MCT4, CD147 and GLUT1 were studied in human samples of CRC, lymph node and hepatic metastasis, by immunohistochemistry.
Results: All proteins were overexpressed in primary CRC, lymph node and hepatic metastasis, when compared with non-neoplastic tissue, with exception of MCT1 in lymph node and hepatic metastasis. MCT1 and MCT4 expressions were associated with CD147 and GLUT1 in primary CRC. These markers were associated with clinical pathological features, reflecting the putative role of these metabolism-related proteins in the CRC setting.
Conclusion: These findings provide additional evidence for the pivotal role of MCTs in CRC maintenance and progression, and support the use of MCTs as biomarkers and potential therapeutic targets in primary and metastatic CRC.This work was supported by the Fundação para a Ciência e a Tecnologia
(FCT) grant ref. PTDC/SAU-FCF/104347/2008, under the scope of ‘Programa
Operacional Temático Factores de Competitividade’ (COMPETE) of ‘Quadro
Comunitário de Apoio III’ and co-financed by the Fundo Europeu De Desenvolvimento
Regional (FEDER). Ricardo Amorim was recipient of the fellowship
SFRH/BD/98002/2013, from Fundação para a Ciência e a Tecnologia (FCT
Portugal).info:eu-repo/semantics/publishedVersio
Evolution and networks in ancient and widespread symbioses between Mucoromycotina and liverworts
Like the majority of land plants, liverworts regularly form intimate symbioses with arbuscular mycorrhizal fungi (Glomeromycotina). Recent phylogenetic and physiological studies report that they also form intimate symbioses with Mucoromycotina fungi and that some of these, like those involving Glomeromycotina, represent nutritional mutualisms. To compare these symbioses, we carried out a global analysis of Mucoromycotina fungi in liverworts and other plants using species delimitation, ancestral reconstruction, and network analyses. We found that Mucoromycotina are more common and diverse symbionts of liverworts than previously thought, globally distributed, ancestral, and often co-occur with Glomeromycotina within plants. However, our results also suggest that the associations formed by Mucoromycotina fungi are fundamentally different because, unlike Glomeromycotina, they may have evolved multiple times and their symbiotic networks are un-nested (i.e., not forming nested subsets of species). We infer that the global Mucoromycotina symbiosis is evolutionarily and ecologically distinctive
- …