22,176 research outputs found

    Approximate solution for Fokker-Planck equation

    Get PDF
    In this paper, an approximate solution to a specific class of the Fokker-Planck equation is proposed. The solution is based on the relationship between the Schr\"{o}dinger type equation with a partially confining and symmetrical potential. To estimate the accuracy of the solution, a function error obtained from the original Fokker-Planck equation is suggested. Two examples, a truncated harmonic potential and non-harmonic polynomial, are analyzed using the proposed method. For the truncated harmonic potential, the system behavior as a function of temperature is also discussed.Comment: 12 pages, 8 figure

    Three-dimensional quantum electrodynamics as an effective interaction

    Get PDF
    We obtain a Quantum Electrodynamics in 2+1 dimensions by applying a Kaluza--Klein type method of dimensional reduction to Quantum Electrodynamics in 3+1 dimensions rendering the model more realistic to application in solid-state systems, invariant under translations in one direction. We show that the model obtained leads to an effective action exhibiting an interesting phase structure and that the generated Chern--Simons term survives only in the broken phase.Comment: 10 pages in Plain Te

    Magnetism and Electronic Correlations in Quasi-One-Dimensional Compounds

    Full text link
    In this contribution on the celebration of the 80th birthday anniversary of Prof. Ricardo Ferreira, we present a brief survey on the magnetism of quasi-one-dimensional compounds. This has been a research area of intense activity particularly since the first experimental announcements of magnetism in organic and organometallic polymers in the mid 80s. We review experimental and theoretical achievements on the field, featuring chain systems of correlated electrons in a special AB2 unit cell structure present in inorganic and organic compounds

    Scaling violation and shadowing corrections at HERA

    Get PDF
    We study the value of shadowing corrections (SC) in HERA kinematic region in Glauber - Mueller approach. Since the Glauber - Mueller approach was proven in perturbative QCD in the double logarithmic approximation (DLA), we develop the DLA approach for deep inelastic structure function which takes into account the SC. Our estimates show small SC for F2F_2 in HERA kinematic region while they turn out to be sizable for the gluon structure function. We compare our estimates with those for gluon distribution in leading order (LO) and next to leading order (NLO) in the DGLAP evolution equations.Comment: 9pp,6 figures in eps file

    Scalar and Spinor Particles in the Spacetime of a Domain Wall in String Theory

    Full text link
    We consider scalar and spinor particles in the spacetime of a domain wall in the context of low energy effective string theories, such as the generalized scalar-tensor gravity theories. This class of theories allows for an arbitrary coupling of the wall and the (gravitational) scalar field. First, we derive the metric of a wall in the weak-field approximation and we show that it depends on the wall's surface energy density and on two post-Newtonian parameters. Then, we solve the Klein-Gordon and the Dirac equations in this spacetime. We obtain the spectrum of energy eigenvalues and the current density in the scalar and spinor cases, respectively. We show that these quantities, except in the case of the energy spectrum for a massless spinor particle, depend on the parameters that characterize the scalar-tensor domain wall.Comment: LATEX file, 21 pages, revised version to appear in Phys. Rev.

    Superintegrability of the Fock-Darwin system

    Get PDF
    The Fock-Darwin system is analysed from the point of view of its symmetry properties in the quantum and classical frameworks. The quantum Fock-Darwin system is known to have two sets of ladder operators, a fact which guarantees its solvability. We show that for rational values of the quotient of two relevant frequencies, this system is superintegrable, the quantum symmetries being responsible for the degeneracy of the energy levels. These symmetries are of higher order and close a polynomial algebra. In the classical case, the ladder operators are replaced by ladder functions and the symmetries by constants of motion. We also prove that the rational classical system is superintegrable and its trajectories are closed. The constants of motion are also generators of symmetry transformations in the phase space that have been integrated for some special cases. These transformations connect different trajectories with the same energy. The coherent states of the quantum superintegrable system are found and they reproduce the closed trajectories of the classical one.Comment: 21 pages,16 figure
    corecore