169 research outputs found

    The Hidden Sexuality of Alexandrium Minutum: An Example of Overlooked Sex in Dinoflagellates

    Get PDF
    Dinoflagellates are haploid eukaryotic microalgae in which rapid proliferation causes dense blooms, with harmful health and economic effects to humans. The proliferation mode is mainly asexual, as the sexual cycle is believed to be rare and restricted to stressful environmental conditions. However, sexuality is key to explaining the recurrence of many dinoflagellate blooms because in many species the fate of the planktonic zygotes (planozygotes) is the formation of resistant cysts in the seabed (encystment). Nevertheless, recent research has shown that individually isolated planozygotes in the lab can enter other routes besides encystment, a behavior of which the relevance has not been explored at the population level. In this study, using imaging flow cytometry, cell sorting, and Fluorescence In Situ Hybridization (FISH), we followed DNA content and nuclear changes in a population of the toxic dinoflagellate Alexandrium minutum that was induced to encystment. Our results first show that planozygotes behave like a population with an “encystment-independent” division cycle, which is light-controlled and follows the same Light:Dark (L:D) pattern as the cycle governing the haploid mitosis. Resting cyst formation was the fate of just a small fraction of the planozygotes formed and was restricted to a period of strongly limited nutrient conditions. The diploid-haploid turnover between L:D cycles was consistent with two-step meiosis. However, the diel and morphological division pattern of the planozygote division also suggests mitosis, which would imply that this species is not haplontic, as previously considered, but biphasic, because individuals could undergo mitotic divisions in both the sexual (diploid) and the asexual (haploid) phases. We also report incomplete genome duplication processes. Our work calls for a reconsideration of the dogma of rare sex in dinoflagellates.Versión del edito

    Treatment of asymptomatic vaginal candidiasis in pregnancy to prevent preterm birth: an open-label pilot randomized controlled trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Although the connection between ascending infection and preterm birth is undisputed, research focused on finding effective treatments has been disappointing. However evidence that eradication of <it>Candida </it>in pregnancy may reduce the risk of preterm birth is emerging. We conducted a pilot study to assess the feasibility of conducting a large randomized controlled trial to determine whether treatment of asymptomatic candidiasis in early pregnancy reduces the incidence of preterm birth.</p> <p>Methods</p> <p>We used a prospective, randomized, open-label, blinded-endpoint (PROBE) study design. Pregnant women presenting at <20 weeks gestation with singleton pregnancies self-collected a vaginal swab. Those who were asymptomatic and culture positive for <it>Candida </it>were randomized to 6-days of clotrimazole vaginal pessaries (100mg) or usual care (screening result is not revealed, no treatment). The primary outcomes were the rate of asymptomatic vaginal candidiasis, participation and follow-up. The proposed primary trial outcome of spontaneous preterm birth <37 weeks gestation was also assessed.</p> <p>Results</p> <p>Of 779 women approached, 500 (64%) participated in candidiasis screening, and 98 (19.6%) had asymptomatic vaginal candidiasis and were randomized to clotrimazole or usual care. Women were not inconvenienced by participation in the study, laboratory testing and medication dispensing were problem-free, and the follow-up rate was 99%. There was a tendency towards a reduction in spontaneous preterm birth among women with asymptomatic candidiasis who were treated with clotrimazole RR = 0.33, 95%CI 0.04-3.03.</p> <p>Conclusions</p> <p>A large, adequately powered, randomized trial of clotrimazole to prevent preterm birth in women with asymptomatic candidiasis is both feasible and warranted.</p> <p>Trial registration</p> <p>Australia and New Zealand Clinical Trials Register (ANZCTR): <a href="http://www.anzctr.org.au/ACTRN12609001052224.aspx">ACTRN12609001052224</a></p

    Bloom dynamics of an exceptional red tide of the toxigenic dinoflagellate

    Get PDF
    19th International Conference on Harmful Algae, october 10-15The toxic dinoflagellate Alexandrium minutum generally proliferates in semi-enclosed sites such as estuaries, harbours and lagoons, where stratification, restricted circulation and accumulation of resting cysts set suitable conditions for its development. In the Galician Rías (NW Iberian Peninsula), its blooms follow also this pattern. They are recurrent in small, shallow estuarine bays inside the Rías, but rarely detected, and if so in minor amount, out of these areas. However, a massive proliferation of A. minutum from June to July 2018 in the Rías Baixas (Vigo and Pontevedra) changed this picture. The bloom initiated in semi-enclosed waters, as previously described for this species, but thereafter spread to the whole embayments where persisted more than one month. It generated a noticeable red tide with disperse patches that became heavily concentrated inside the port of Vigo. During that period shellfish harvesting closures and paralytic shellfish toxins in certain marine invertebrates and fish were reported for the first time in Spain. Meteorological conditions (higher than usual rains/runoff, sustained temperature increment and oscillating wind pattern promoting a series of upwelling-relaxation cycles) fostered optimal circumstances for the outbreak of A. minutum: strong vertical stratification and the alternation of retention and dispersion processes. Simulations from a particle tracking model portrayed the observed bloom development phases: onset, transport within the surface layer towards the interior parts of the Ría of Vigo, and dispersion all over the embayment. High concentrations of resting cysts were detected several months after the bloom, which may have favoured flourish of A. minutum in the following years, markedly in 2020.N

    Predicting sample size required for classification performance

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Supervised learning methods need annotated data in order to generate efficient models. Annotated data, however, is a relatively scarce resource and can be expensive to obtain. For both passive and active learning methods, there is a need to estimate the size of the annotated sample required to reach a performance target.</p> <p>Methods</p> <p>We designed and implemented a method that fits an inverse power law model to points of a given learning curve created using a small annotated training set. Fitting is carried out using nonlinear weighted least squares optimization. The fitted model is then used to predict the classifier's performance and confidence interval for larger sample sizes. For evaluation, the nonlinear weighted curve fitting method was applied to a set of learning curves generated using clinical text and waveform classification tasks with active and passive sampling methods, and predictions were validated using standard goodness of fit measures. As control we used an un-weighted fitting method.</p> <p>Results</p> <p>A total of 568 models were fitted and the model predictions were compared with the observed performances. Depending on the data set and sampling method, it took between 80 to 560 annotated samples to achieve mean average and root mean squared error below 0.01. Results also show that our weighted fitting method outperformed the baseline un-weighted method (p < 0.05).</p> <p>Conclusions</p> <p>This paper describes a simple and effective sample size prediction algorithm that conducts weighted fitting of learning curves. The algorithm outperformed an un-weighted algorithm described in previous literature. It can help researchers determine annotation sample size for supervised machine learning.</p

    HABs in coastal upwelling systems: Insights from an exceptional red tide of the toxigenic dinoflagellate Alexandrium minutum

    Get PDF
    14 pages, 8 figures, 1 table.-- Under a Creative Commons licenseAlexandrium minutum blooms generally occur in semi-enclosed sites such as estuaries, harbours and lagoons, where enhanced stratification, restricted circulation and accumulation of resting cysts in the sediment set suitable habitat conditions for the proliferation of this paralytic shellfish poisoning toxigenic species. In the Galician Rías Baixas (NW Iberian Peninsula), according to weekly time-series between 1994 and 2020, blooms of A. minutum were recurrent in small, shallow estuarine bays inside the Rías de Vigo and Pontevedra, but rarely detected, and if so at low concentrations, out of these environments. However, from May to July 2018 it developed as usual in the small inner bays but then spread over both Rías (Vigo and Pontevedra) causing discoloured waters during one month and prolonged harvesting closures. Meteorological conditions during that period (rains / runoff higher than climatological averages, sustained temperature increment and oscillating wind pattern –i.e., series of upwelling-relaxation cycles), fostered optimal circumstances for the development of that extensive and massive proliferation: strong vertical stratification and the alternation of retention and dispersion processes. Simulations from a particle tracking model portrayed the observed bloom development phases: onset and development inside a small inner bay; transport within the surface layer, from these sites towards the interior parts of the Ría; and dispersion all over the embayment. Seedbeds with high concentrations of resting cysts were detected several months after the bloom, which may have favoured flourishment of A. minutum in the following two years, markedly in 2020. The present work contributes to the general understanding of the dynamics of harmful algal blooms (HABs), from which surveillance indicators of the state of marine ecosystems and their evolution can be derived. We hypothesize that the intensity and frequency of A. minutum proliferations in the Galician Rías could increase under projected climate trendsThis work was funded by the Spanish national project DIANAS (CTM2017-86066-R, MICINN) and CCVIEO (Instituto Español de Oceanografía). PD-T was supported by the Xunta de Galicia program “Talento Senior” (N° contract 03 IN858A 2019 1630129) with additional funds of the Axencia Galega de Innovacion (agreement GAIN-IEO)Peer reviewe
    corecore