19 research outputs found

    Sparse image approximation with application to flexible image coding

    Get PDF
    Natural images are often modeled through piecewise-smooth regions. Region edges, which correspond to the contours of the objects, become, in this model, the main information of the signal. Contours have the property of being smooth functions along the direction of the edge, and irregularities on the perpendicular direction. Modeling edges with the minimum possible number of terms is of key importance for numerous applications, such as image coding, segmentation or denoising. Standard separable basis fail to provide sparse enough representation of contours, due to the fact that this kind of basis do not see the regularity of edges. In order to be able to detect this regularity, a new method based on (possibly redundant) sets of basis functions able to capture the geometry of images is needed. This thesis presents, in a first stage, a study about the features that basis functions should have in order to provide sparse representations of a piecewise-smooth image. This study emphasizes the need for edge-adapted basis functions, capable to accurately capture local orientation and anisotropic scaling of image structures. The need of different anisotropy degrees and orientations in the basis function set leads to the use of redundant dictionaries. However, redundant dictionaries have the inconvenience of giving no unique sparse image decompositions, and from all the possible decompositions of a signal in a redundant dictionary, just the sparsest is needed. There are several algorithms that allow to find sparse decompositions over redundant dictionaries, but most of these algorithms do not always guarantee that the optimal approximation has been recovered. To cope with this problem, a mathematical study about the properties of sparse approximations is performed. From this, a test to check whether a given sparse approximation is the sparsest is provided. The second part of this thesis presents a novel image approximation scheme, based on the use of a redundant dictionary. This scheme allows to have a good approximation of an image with a number of terms much smaller than the dimension of the signal. This novel approximation scheme is based on a dictionary formed by a combination of anisotropically refined and rotated wavelet-like mother functions and Gaussians. An efficient Full Search Matching Pursuit algorithm to perform the image decomposition in such a dictionary is designed. Finally, a geometric image coding scheme based on the image approximated over the anisotropic and rotated dictionary of basis functions is designed. The coding performances of this dictionary are studied. Coefficient quantization appears to be of crucial importance in the design of a Matching Pursuit based coding scheme. Thus, a quantization scheme for the MP coefficients has been designed, based on the theoretical energy upper bound of the MP algorithm and the empirical observations of the coefficient distribution and evolution. Thanks to this quantization, our image coder provides low to medium bit-rate image approximations, while it allows for on the fly resolution switching and several other affine image transformations to be performed directly in the transformed domain

    Interlink between Inflammation and Oxidative Stress in Age-Related Macular Degeneration: Role of Complement Factor H

    Full text link
    Age-related macular degeneration (AMD) heads the list of legal blindness among the elderly population in developed countries. Due to the complex nature of the retina and the variety of risk factors and mechanisms involved, the molecular pathways underlying AMD are not yet fully defined. Persistent low-grade inflammation and oxidative stress eventually lead to retinal pigment epithelium dysfunction and outer blood-retinal barrier (oBRB) breakdown. The identification of AMD susceptibility genes encoding complement factors, and the presence of inflammatory mediators in drusen, the hallmark deposits of AMD, supports the notion that immune-mediated processes are major drivers of AMD pathobiology. Complement factor H (FH), the main regulator of the alternative pathway of the complement system, may have a key contribution in the pathogenesis of AMD as it is able to regulate both inflammatory and oxidative stress responses in the oBRB. Indeed, genetic variants in the CFH gene account for the strongest genetic risk factors for AMD. In this review, we focus on the roles of inflammation and oxidative stress and their connection with FH and related proteins as regulators of both phenomena in the context of AMD

    Activation of C-reactive protein proinflammatory phenotype in the blood retinal barrier in vitro: implications for age-related macular degeneration

    Full text link
    The retinal pigment epithelium (RPE) is considered one of the main targets of age-related macular degeneration (AMD), the leading cause of irreversible vision loss among the ageing population worldwide. Persistent low grade inflammation and oxidative stress eventually lead to RPE dysfunction and disruption of the outer blood-retinal barrier (oBRB). Increased levels of circulating pentameric C-reactive protein (pCRP) are associated with higher risk of AMD. The monomeric form (mCRP) has been detected in drusen, the hallmark deposits associated with AMD, and we have found that mCRP induces oBRB disruption. However, it is unknown how mCRP is generated in the subretinal space. Using a Transwell model we found that both pCRP and mCRP can cross choroidal endothelial cells and reach the RPE in vitro and that mCRP, but not pCRP, is able to cross the RPE monolayer in ARPE-19 cells. Alternatively, mCRP can originate from the dissociation of pCRP in the surface of lipopolysaccharide-damaged RPE in both ARPE-19 and primary porcine RPE lines. In addition, we found that the proinflammatory phenotype of mCRP in the RPE depends on its topological localization. Together, our findings further support mCRP contribution to AMD progression enhancing oBRB disruption

    Minimal Symptom Expression' in Patients With Acetylcholine Receptor Antibody-Positive Refractory Generalized Myasthenia Gravis Treated With Eculizumab

    Get PDF
    The efficacy and tolerability of eculizumab were assessed in REGAIN, a 26-week, phase 3, randomized, double-blind, placebo-controlled study in anti-acetylcholine receptor antibody-positive (AChR+) refractory generalized myasthenia gravis (gMG), and its open-label extension

    Post-intervention Status in Patients With Refractory Myasthenia Gravis Treated With Eculizumab During REGAIN and Its Open-Label Extension

    Get PDF
    OBJECTIVE: To evaluate whether eculizumab helps patients with anti-acetylcholine receptor-positive (AChR+) refractory generalized myasthenia gravis (gMG) achieve the Myasthenia Gravis Foundation of America (MGFA) post-intervention status of minimal manifestations (MM), we assessed patients' status throughout REGAIN (Safety and Efficacy of Eculizumab in AChR+ Refractory Generalized Myasthenia Gravis) and its open-label extension. METHODS: Patients who completed the REGAIN randomized controlled trial and continued into the open-label extension were included in this tertiary endpoint analysis. Patients were assessed for the MGFA post-intervention status of improved, unchanged, worse, MM, and pharmacologic remission at defined time points during REGAIN and through week 130 of the open-label study. RESULTS: A total of 117 patients completed REGAIN and continued into the open-label study (eculizumab/eculizumab: 56; placebo/eculizumab: 61). At week 26 of REGAIN, more eculizumab-treated patients than placebo-treated patients achieved a status of improved (60.7% vs 41.7%) or MM (25.0% vs 13.3%; common OR: 2.3; 95% CI: 1.1-4.5). After 130 weeks of eculizumab treatment, 88.0% of patients achieved improved status and 57.3% of patients achieved MM status. The safety profile of eculizumab was consistent with its known profile and no new safety signals were detected. CONCLUSION: Eculizumab led to rapid and sustained achievement of MM in patients with AChR+ refractory gMG. These findings support the use of eculizumab in this previously difficult-to-treat patient population. CLINICALTRIALSGOV IDENTIFIER: REGAIN, NCT01997229; REGAIN open-label extension, NCT02301624. CLASSIFICATION OF EVIDENCE: This study provides Class II evidence that, after 26 weeks of eculizumab treatment, 25.0% of adults with AChR+ refractory gMG achieved MM, compared with 13.3% who received placebo

    Influence of a Large Image Watermarking Scheme Parallelization On Possible attacks

    No full text
    Digital data representation provides an efficient and fast way to access to information and to exchange it. In many situations though ownership or copyright protection mechanisms are desired. For still images and video, one possible way to achieve this is through watermarking. Watermarking consists of an imperceptible information embedded within a given media. Parallel Processing Watermarking Embedding Schemes have demonstrated to be efficient from a computational and memory usage point of view for very large images. These schemes consist in dividing the image into tiles and watermarking each independently. The processing allows the use of a parallel computation scheme. The watermarking method used in the scope of this work is a parallel variant of an approach known as self-referenced Spread Spectrum signature pattern. Since the watermarking scheme has been modified through tiling, the extra references due to signature replication can be used in the retrieval. This work describes the above mentioned approach to watermark images and provides an analysis of its performance

    A Posteriori Quantization of Progressive Matching Pursuit Streams

    No full text
    This paper proposes a rate-distortion optimal a posteriori quantization scheme for matching pursuit (MP) coefficients. The a posteriori quantization applies to an MP expansion that has been generated offline and cannot benefit of any feedback loop to the encoder in order to compensate for the quantization noise. The redundancy of the MP dictionary provides an indicator of the relative importance of coefficients and atom indices and, subsequently, on the quantization error. It is used to define a universal upper bound on the decay of the coefficients, sorted in decreasing order of magnitude. A new quantization scheme is then derived, where this bound is used as an Oracle for the design of an optimal a posteriori quantizer. The latter turns the exponentially distributed coefficient entropy-constrained quantization problem into a simple uniform quantization problem. Using simulations with random dictionaries, we show that the proposed exponentially upper bounded quantization (EUQ) clearly outperforms classical schemes. Stepping on the ideal Oracle-based approach, a suboptimal adaptive scheme is then designed that approximates the EUQ but still outperforms competing quantization methods in terms of rate-distortion characteristics. Finally, the proposed quantization method is studied in the context of image coding. It performs similarly to state-of-the-art coding methods (and even better at low rates) while interestingly providing a progressive stream that is very easy to transcode and adapt to changing rate constraints

    Mass spectrometric characterisation of acondensation product betweenporphobilinogen and indolyl-3-acryloylglycinein urine of patients with acuteintermittent porphyria

    No full text
    We document the presence of a previously unknown species in the urine of patients with acute intermittent porphyria (AIP). Thecompound was fully characterised by liquid chromatography tandem mass spectrometry. Interpretation of both full spectrum ac-quisition and product ion spectra acquired in positive and negative ionisation modes by quadrupole time of flight MS allowed forthe identification of a condensation product arising from porphobilinogen (PBG, increased in the urine of AIP patients) andindolyl-3-acryloylglycine (IAG, derived from indolylacrylic acid and present in human urine). The structure was unequivocally con-firmed through comparison between the selected reaction monitoring chromatograms obtained from the urinary species and thecondensation product qualitatively synthesised in the laboratory. Owing to the large amounts of both PBG and IAG in urine of AIPpatients, the possible ex vivo formation of PBG-IAG in urine samples was evaluated. The product was spontaneously formed atroom temperature, at 4 °C and even during storage at 20 °C when spiking a control sample with PBG. A positive correlationwas found between PBG and PBG-IAG in samples collected from AIP patients. However, no correlation was found between PBG-IAG and IAG. Purified PBG-IAG did not form the characteristic chromogen after application of p-dimethylaminobenzaldehyde inHCl, thus suggesting that the current techniques used to measure PBG in urine of AIP patients based on Ehlrich’sreactiondonot detect this newly characterised PBG-IAG fraction
    corecore