37 research outputs found

    Projeto QUAMIS: Avaliação da Qualidade do Ambiente Interior em Salas de Aula

    Get PDF
    O projeto QUAMIS- Qualidade do ambiente interior em salas de aula desenvolvido pela Escola Superior de Tecnologia e Gestão do Instituto Politécnico de Viseu- ESTGV/IPV, envolvendo elementos dos Departamentos de Ambiente e de Engenharia Civil, tem como objetivo contribuir para a melhoria do ambiente interior em salas de aula na Zona Centro de Portugal, com base no conhecimento extensivo, sustentado e integrado das condições existentes. Trata-se de um projeto sem financiamento externo, concretizado a partir de uma série de parcerias com entidades exteriores. Os estudantes passam cerca de um terço do dia em estabelecimentos escolares, sobretudo em salas de aula. É cientificamente consensual que as condições ambientais no interior das salas de aula influenciam não só a saúde dos estudantes mas também a respetiva atitude e desempenho [1,2]. Os aspetos de saúde são particularmente importantes em crianças e jovens, já que estes são mais suscetíveis aos efeitos adversos de condições ambientais inadequadas, nomeadamente deficiente qualidade do ar com presença de poluentes ou condições acústicas inapropriadas [3,4]. O controlo das condições ambientais no interior das salas de aula deve ser encarado como uma prioridade, o que motivou o presente projecto

    Fragaria vesca L. Extract: A Promising Cosmetic Ingredient with Antioxidant Properties

    Get PDF
    © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).Fragaria vesca L. (F. vesca), popularly known as wild strawberry, is a plant from the Rosaceae family, found in temperate and subtropical areas of the northern hemisphere. F. vesca leaves have been shown to have antiseptic, emollient, and dermatological protection properties, due to the presence of bioactive compounds, such as flavonoids, phenolic acids, ellagitannins, and proanthocyanidins. In this study, a F. vesca extract was obtained by an optimized extraction process, and was characterized by HPLC, ROS scavenging activity, cytotoxicity assays in HaCaT cells, and tyrosinase inhibitory activity determination. The most active extract was then incorporated in a hydrogel with hydroxyethylcellulose at 2% (w/w), which was characterized at the physicochemical, stability, cytotoxicity, and ROS scavenging activity levels to evaluate its quality, safety, and efficacy. In vivo studies, human repeat insult patch testing, and an assay to determine their antioxidant efficacy, were also performed. The results showed that the Fragaria vesca extracts had antioxidant activity and that the F. vesca extract-based hydrogel exhibited cutaneous compatibility, acceptability and antioxidant efficacy, being stable, and suitable for topical application.This work was supported by UID/QUI/50006/2019 with funding from FCT/MCTES through national funds, and by Programa de Cooperación Interreg V-A España—Portugal (POCTEP) 2014–2020 (project 0377_IBERPHENOL_6_E). This research was also funded by Fundação para a Ciência e a Tecnologia, Portugal (UID/DTP/04138/2019 to iMedUlisboa) and by PhD Trials.info:eu-repo/semantics/publishedVersio

    Blueberry consumption challenges hepatic mitochondrial bioenergetics and elicits transcriptomics reprogramming in healthy wistar rats

    Get PDF
    An emergent trend of blueberries’ (BB) “prophylactic” consumption, due to their phytochemicals’ richness and well-known health-promoting claims, is widely scaled-up. However, the benefits arising from BB indiscriminate intake remains puzzling based on incongruent preclinical and human data. To provide a more in-depth elucidation and support towards a healthier and safer consumption, we conducted a translation-minded experimental study in healthy Wistar rats that consumed BB in a juice form (25 g/kg body weight (BW)/day; 14 weeks’ protocol). Particular attention was paid to the physiological adaptations succeeding in the gut and liver tissues regarding the acknowledged BB-induced metabolic benefits. Systemically, BB boosted serum antioxidant activity and repressed the circulating levels of 3-hydroxybutyrate (3-HB) ketone bodies and 3-HB/acetoacetate ratio. Moreover, BB elicited increased fecal succinic acid levels without major changes on gut microbiota (GM) composition and gut ultra-structural organization. Remarkably, an accentuated hepatic mitochondrial bioenergetic challenge, ensuing metabolic transcriptomic reprogramming along with a concerted anti-inflammatory pre-conditioning, was clearly detected upon long-term consumption of BB phytochemicals. Altogether, the results disclosed herein portray a quiescent mitochondrial-related metabolomics and hint for a unified adaptive response to this nutritional challenge. The beneficial or noxious consequences arising from this dietary trend should be carefully interpreted and necessarily claims future research.info:eu-repo/semantics/publishedVersio

    Chemical Composition and Effect against Skin Alterations of Bioactive Extracts Obtained by the Hydrodistillation of Eucalyptus globulus Leaves

    Get PDF
    Eucalyptus globulus is planted extensively for pulp, paper and wood production. Although bioactive compounds obtained from its biomass are used as cosmetics ingredients, the skin effects were not yet fully explored. In order to fill this gap, this work aimed to study the protective effect against skin damage provided by the essential oil (EO) obtained from the hydrodistillation of Eucalyptus globulus leaves, and by an extract obtained from the hydrodistillation residual water (HRW). The major compound identified in the EO was 1,8-Cineole, and the phenolic acids in the HRW included gallic acid as the main phenolic constituent. Moreover, non-toxic EO and HRW concentrations were shown to have anti-aging skin effects in vitro, decreasing age-related senescence markers, namely β-galactosidase and matrix metalloproteinases activation, as well as collagen type 1 upregulation. In addition, EO and HRW were found to exhibit depigmenting effects by inhibiting tyrosinase and melanin production, along with potent anti-inflammatory properties. Furthermore, the absence of skin irritation and sensitization in cells exposed to EO and HRW revealed the safety of both extracts for topical use. Taken together, these results highlight the beneficial effects of extracts obtained from Eucalyptus globulus biomass for skin aesthetic and health purposes, which should be explored deeply for the prediction of future pharmaceutical and dermocosmetics industrial applications

    Cymbopogon Citratus: Composição Fenólica e Actividade Anti-Inflamatória

    No full text
    Tese de doutoramento em Farmácia, na especialidade de Farmacognosia e Fitoquímica, apresentada à Faculdade de Farmácia da Universidade de Coimbr

    Effect of Phenolic Compounds from Cymbopogon citratus (DC) Stapf. Leaves on Micellar Solubility of Cholesterol

    No full text
    Dyslipidemias are one of the risk factors for cardiovascular diseases, the leading cause of death and hospitalization worldwide. One way to control cholesterol levels is to control the exogenous cholesterol intake in the body. Natural polyphenolic compounds, namely theaflavins from plant extracts such as black tea, showed the ability to inhibit the formation of the micellar structure, essential for the absorption of cholesterol in the intestine. There are several methodologies to determine this effect, many of which are expensive and time-consuming. Due to these facts, the main purposes of this work were to optimize an inexpensive colorimetric method to study, in vitro, the micellar solubility of cholesterol and applied it to plant extracts. In this work, Cymbopogon citratus leaf extracts, its phenolic fractions, and flavonoids were evaluated. The non-delipidified infusion (CcI) obtained a maximum percentage of micelle destruction of 59.22% for a concentration of 50 μg/mL and the delipidified infusion (CcdI) obtained a maximum percentage of micelle destruction of 58.01% for a concentration of 200 μg/mL. In the case of the fraction of phenolic acids (CcPAs), 23.85% of maximum micellar destruction was recorded for the concentration of 100 μg/mL, while for the fraction of flavonoids (CcF), the micellar destruction was 92.74% at 1 μg/mL, and for the tannin fraction (CcT) of 99.45% at 25 μg/mL. Luteolin presented a percentage of micelle destruction of 94.83% in the concentration of 1 ng/mL, followed by luteolin-7-O-glucoside with 93.71% and luteo-lin-6-C-glucoside with 91.26% at the concentrations of 25 ng/mL and 50 ng/mL, respectively. These results suggest the capability of polyphenols from Cymbopogon citratus to prevent the cholesterol absorption in the gut by micellar destruction, and its contribution for cholesterol-lowering activity

    Synergistic Effect of DIBOA and Verbascoside from <i>Acanthus mollis</i> Leaf on Tyrosinase Inhibition

    No full text
    Overexpression of melanin contributes to darkening of plant and fruit tissues and skin hyperpigmentation, leading to melasma or age spots. Although melanin biosynthesis is complex and involves several steps, a single enzyme known as tyrosinase is key to regulating this process. The melanogenesis pathway is initiated by oxidation of the starting material l-tyrosine (or l-DOPA) to dopaquinone by tyrosinase; the resulting quinone then serves as a substrate for subsequent steps that eventually lead to production of melanin. Medicinal plants are considered a good source of tyrosinase inhibitors. This study investigated the tyrosinase inhibitory activity of A. mollis leaf extracts and their phytochemicals. Significant activity was verified in the ethanol extract –EEt (IC50 = 1.21 µg/mL). Additionally, a kinetic study showed that this tyrosinase inhibition occurs by DIBOA (2,4-dihydroxy-1,4-benzoxazin-3-one) and verbascoside contribution through a non-competitive reaction mechanism. A synergistic effect on tyrosinase inhibition was observed in the binary combination of the compounds. In conclusion, both EEt and a mixture of two of its phytochemicals can be effective tyrosinase inhibitors and can be used as a bleaching agent for cosmetic formulations in the future

    Formulation Effects in the Antioxidant Activity of Extract from the Leaves of Cymbopogon citratus (DC) Stapf

    No full text
    Cymbopogon citratus DC (Stapf.) is a perennial grass and it is distributed around the world. It is used as a condiment for food and beverage flavouring in the form of infusions and decoctions of its dried leaves. Our previous studies have shown antioxidant, anti-inflammatory and gastroprotective activities for the infusion and its phenolic fractions. The aim of the present work was to develop oral dosage forms from a Cymbopogon citratus extract to be used as a functional food with antioxidant properties. Initially, an essential oil-free infusion was prepared, lyophilized and characterized by HPLC-PDA. Total phenols were quantified with the Folin–Ciocalteu method and the antioxidant activity was assessed by DPPH assay. Gelatine capsules containing the extract with different excipients, selected after DSC and IR trials, were prepared. A formulation exhibiting better antioxidant behaviour in a gastric environment was attained. These results suggest that the proposed formulation for this extract could be a valuable antioxidant product and, consequently, make an important contribution to “preventing” and minimizing diseases related to oxidative stress conditions

    Bioactive Edible Films and Coatings Based in Gums and Starch: Phenolic Enrichment and Foods Application

    No full text
    Edible films and coatings allow preserving fresh and processed food, maintaining quality, preventing microbial contamination and/or oxidation reactions and increasing the shelf life of food products. The structural matrix of edible films and coatings is mainly constituted by proteins, lipids or polysaccharides. However, it is possible to increase the bioactive potential of these polymeric matrices by adding phenolic compounds obtained from plant extracts. Phenolic compounds are known to possess several biological properties such as antioxidant and antimicrobial properties. Incorporating phenolic compounds enriched plant extracts in edible films and coatings contribute to preventing food spoilage/deterioration and the extension of shelf life. This review is focused on edible films and coatings based on gums and starch. Special attention is given to bioactive edible films and coatings incorporating plant extracts enriched in phenolic compounds
    corecore