656 research outputs found
Experimental analysis of fiber reinforced concrete slabs
The influence of steel fibers on the behavior of concrete structures with fracture mode I is assessed
by performing bending tests on slab strips reinforced with a conventional wire mesh reinforcement
and different percentages of fibers. Tests performed with plain concrete slabs, steel fiber
reinforced concrete slabs and wire mesh reinforced concrete slabs supported on soil are also
described and the main results discussed
Model for the analysis of steel fibre reinforced concrete slabs on grade
A constitutive model is developed for material non linear analysis of steel fibre reinforced concrete slabs supported on soil. The energy absorption capacity provided by fibre reinforcement is taken into account in the material constitutive relationship. The theory of plasticity is used to deal with the elasto plastic behaviour of concrete. A smeared crack model is used for reproducing the concrete cracking behaviour. The soil non-linear behaviour is simulated by springs on orthogonal direction to the slab. The loss of contact between the slab and the soil is accounted for. The model performance is assessed using results of experimental research
Análise de elementos de parede de betão armado
O modelo desenvolvido e aplicado no presente trabalho simula o comportamento
elasto-plástico do betão e das armaduras e modela o amolecimento em tracção e em
compressão do betão. É possÃvel simular com rigor adequado o comportamento de zonas de
ocorrência simultânea de fendilhação e amolecimento por compressão. Um painel ensaiado
experimentalmente é analisado e os resultados discutidos
Simulação numérica do comportamento de lajes de betão reforçado com fibras de aço apoiadas em solo
Neste trabalho apresenta-se os principais resultados obtidos nos ensaios efectuados com lajes
de betão apoiadas em solo. Ensaiaram-se lajes de betão simples, de betão reforçado com
fibras de aço e lajes armadas com rede electrossoldada. É também sucintamente descrito o
modelo numérico desenvolvido para analisar este tipo de estruturas. Este modelo baseia-se
nas técnicas dos elementos finitos e permite simular o comportamento não linear material da
estrutura laminar e do solo de fundação. É contemplada a possibilidade da laje perder o
contacto com o solo. O desempenho do modelo foi avaliado por intermédio da simulação
numérica dos ensaios experimentais efectuados.In this work it is presented the main results obtained with the tests performed with slabs
supported on soil. It was tested slabs of plain concrete, reinforced with steel fibers and
reinforced with convencional wire mesh. It is also briefly described the numerical model
developed for analyse this kind of structures. This model is based on the finite element
techniques and allows to simulate the material non-linear behavior of the concrete laminate
structure and the soil foundation. It is accounted the possibility of the lost contact between
slab and soil. The model performance was assessed with reference to the experimental
investigations carried out
Experimental behaviour of fibre concrete slabs on soil
The cracking control of plain concrete slabs on soil foundation requires the execution of joints with mechanisms
of load transfer between adjacent panels. These joints increase the construction costs and, often, are the source of
local damage and loss of service performance. Slabs reinforced with steel wire mesh have been used in order to
increase the load carrying capacity and to enhance the cracking control. However, the use of this conventional
reinforcement increases the costs, mainly due to labor time spent on the arrangement and positioning of the
reinforcement.
Fiber reinforced concrete is a recent material well fitted for applications in industrial floors on soil foundation.
The cost of fibers is compensated by a faster construction process and a reduction in the number of expansion
joints. The fatigue, impact and flexural strength are significantly improved when steel fibers are added to the
concrete mix.
The work developed aims to contribute to the on going research effort to clarify the behavior of fiber reinforced
concrete slabs on soil foundation. For this purpose, an experimental and numerical investigation were carried out.
The present article deals basically with the experimental work developed, describing the tests performed and
discussing the main results obtained
Experimental and numerical analysis of steel fiber reinforced concrete slabs
Steel fiber reinforced concrete (SFRC) has proven to be an attractive material for a
wide range of applications in civil construction industry. The excellent performance exhibited
by this composite is essentially due to its high energy absorption capacity.
This paper describes the tests performed and the numerical model developed to simulate the
behavior of SFRC structures. The influence of steel fibers on the behavior of concrete
structures with fracture mode I was assessed by performing bending tests on slab strips
reinforced with different percentage of fibers and including a conventional wire mesh
reinforcement, as well. Fiber concentration ranged from 0 to 2.5 percent by weight of
concrete. The hooked-ends steel fibers, with the trademark Dramix ZX60/.80, were the fibers
considered in this study.
A significant increase in the load carrying capacity of the slabs and a decrease in the crack
spacing were observed with the increasing of fiber content.
The constitutive model developed is based on the strain decomposition concept for the
cracked cement based materials. This concept is adjusted to simulate the fiber reinforcement
contribution. The model performance was assessed by the experimental results obtained
Modelo de fendilhação para estruturas de betão reforçado com fibras de aço
A capacidade de absorção de energia, a ductilidade, o comportamento sob fendilhação e a
resistência às acções dinâmicas e estáticas são melhoradas pela adição de fibras à composição do
betão. Foi desenvolvido um modelo de fendilhação para estruturas laminares constituÃdas por
materiais de matriz cimentÃcia, quer sejam ou não reforçados com armaduras convencionais e/ou
fibras. Este modelo baseia-se no princÃpio da decomposição das deformações para o betão
fendilhado. A validação do modelo é efectuado através da simulação numérica do comportamento
registado em ensaios de flexão sobre prismas entalhados.The energy absorption capacity, the ductility, the cracking behavior and the dynamic and static
strength of cimentitious materials are significatively improved by fibre adition. A computational
code was developed for non-linear analysis of concrete structures reinforced with conventional
steel bars or/and fibers. This model is based on the strain decomposition concept for cracked
concrete. The model performance was assessed by comparing the numerical and experimental
behavior of three-point-bending notched beams specimens
Comportamento de elementos estruturais de betão reforçado com fibras de aço
O betão reforçado com fibras (BRF) é um material compósito relativamente recente em
aplicações de Engenharia Civil. A capacidade de absorção de energia, a ductilidade, o comportamento
sob fendilhação e a resistência às acções dinâmicas e estáticas são melhoradas pela correcta adição de
fibras à composição dos materiais de matriz cimentÃcia.
Neste trabalho são analisados os aspectos essenciais das técnicas de fabrico e as propriedades
dos betões reforçados com fibras de aço (BRFA). Ensaios de compressão e flexão com controle de
deformações sobre provetes reforçados com fibras de aço permitiram verificar um aumento substancial
da capacidade de absorção de energia. Ensaios sobre vigas e faixas de laje revelaram que os
mecanismos de reforço introduzidos pelas fibras aumentam a ductilidade e a resistência à flexão e
corte do material. É efectuada uma análise comparativa entre resultados experimentais e numéricos
com vista à aferição do modelo numérico desenvolvido.The fibre reinforced concrete is a composite material with a increasing number of applications
on engineering structures. The fracture energy, the ductility, the cracking behaviour and the strength
characteristics under dynamic loads are significatively improved by adding steel fibres to the concrete
composition.
In the present work, the mix techniques and the properties of fibre reinforced concrete are
analysed. Uniaxial compression tests and three-point bending notched tests carried out with
displacement control have shown a significative improvement in the fracture energy when steel fibres
are present. The ductility and strength characteristics of beams and slabs experimentally tested were
also improved with the presence of fibres. The experimental results obtained are used to appraise a
numerical model developed for the analysis of fibre reinforced concrete structures
- …