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Summary 

 

A constitutive model is developed for material non-linear analysis of steel fibre reinforced 

concrete slabs supported on soil. The energy absorption capacity provided by fibre 

reinforcement is taken into account in the material constitutive relationship. The theory of 

plasticity is used to deal with the elasto-plastic behaviour of concrete. A smeared-crack 

model is used for reproducing the concrete cracking behaviour. The soil non-linear 

behaviour is simulated by springs on orthogonal direction to the slab. The loss of contact 

between the slab and the soil is accounted for. The model performance is assessed using 

results of experimental research. 
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1 - INTRODUCTION 

 

Westergaard [1] was, probably, the first researcher to develop analytical models for 

studying plain concrete beams and slabs supported on an elastic field. These models are, 

however, restricted to the linear elastic regime, which is far from the real behaviour of 

cement based materials such as concrete. In order to avoid the brittle failure of plain 

concrete, the use of steel rods and steel wire meshes on concrete industrial floors became a 

current practice after the sixties. To design reinforced concrete slabs on grade, Losberg [2] 

and Meyerhof [3] developed analytical models based on the yield line theory [4]. However, 

these models are not able to reproduce the deformational behaviour up to the collapse load 

of a reinforced concrete slab on grade. 

 

Recently, a finite element based model [5] was proposed to evaluate the load-carrying 

capacity of plain concrete slabs on grade. However, the model results are mesh dependent 

[6] because the tensile post cracking energy absorption capacity was not accounted for. 

 

In the last two decades the conventional reinforcement on industrial floors has been 

replaced by steel fibres. Research and practice have shown that, in comparison to 

conventional reinforcement, steel fibre reinforcement is more efficient and economic for 

industrial floors [7,8]. The mechanical properties and the cracking behaviour are improved 

by adding steel fibres to the concrete mix [9-11]. Numerical models for analysing laminar 

structures of steel fibre reinforced concrete (SFRC) are still scarce. Using a model for 

material non-linear analysis of reinforced concrete structures, Falkner and Teutsch [12] 

have proposed some procedures to adjust this model to SFRC structures. The main 

suggestion advanced by these researchers was the evaluation of a reinforcement equivalent 
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to a given content of fibres. This procedure was based on the equivalent flexural tensile 

strength proposed by the German Concrete Association [13]. The assumptions of Falkner 

and Teutsch seem too simplified for simulating the behaviour introduced by fibre 

reinforcement, as it can be observed from their numerical results. 

 

The experimental research has revealed that the post-peak behaviour of SFRC, both under 

tension and under compression is much more ductile than the corresponding behaviour of 

plain concrete [9,14]. New constitutive laws have been proposed for modelling the 

post-peak behaviour of SFRC in compression, as well as in tension [10]. The failure 

envelope of SFRC under biaxial compression is also different from the corresponding plain 

concrete [15,16]. However, for the content of fibres usually applied in industrial floors, the 

differences are marginal. 

 

In the present work a constitutive model is developed for material non-linear analysis of 

SFRC slabs supported on soil. The main characteristics induced by fibre reinforcement are 

simulated in the material constitutive laws, namely, in the tension and in the compression 

post-peak stress-strain relationship. The parameters of the material constitutive laws have 

been assessed for concrete reinforced with hooked ends steel fibres [17] (ZP30/.50 and 

ZX60/.80). 
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2 – THE SOFTENING BEHAVIOUR OF SFRC 

 

2.1 - Introduction 

 

The ability of SFRC to absorb energy has long been recognized [9,18-20] as one of the 

most important benefits of incorporating fibres into plain concrete. Tension [21], 

compression [22-23] and bending [9,10] tests performed under displacement control have 

revealed the high-energy absorption capacity of SFRC. For the content of fibres used in 

current applications the tension and the compression behaviour are basically changed on 

their post-peak branches (strain-softening). 

 

An experimental work was recently carried out to appraise the strain softening behaviour of 

SFRC on tension and on compression [10]. The main results obtained and used in 

ascertaining the numerical model developed, will be briefly described in the present 

section. 

 

2.2 – Compression behaviour 

 

Previous work [14,22,23] has shown that the complete stress-strain expressions proposed 

for plain concrete [24,25] cannot adequately fit the post-peak response of the fibre 

concrete. Based on experimental research, a new expression was proposed [10], 
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where 

 fcc W0002.0101 +=εε , (3) 

                                                p Wf= − −10 0 919 0 394. . exp( . )  (4) 

 

for ZP30/.50 fibres and 

 

                                               ε εc c fW1 10 0 00026= + . , (5) 

                                             p Wf= − −10 0 722 0144. . exp( . )  (6) 

 

for ZX60/.80 fibres. In these expressions cf  is the compression strength, ciE  is the initial 

modulus of elasticity, 1cE  is the modulus of elasticity at peak stress [24], εc10  is the strain 

at peak for plain concrete (2.2 × 10
-3

 according to CEB-FIP Model Code 1990) and Wf  is 

the fibre weight percentage in the mixture. In Fig. 1, σ εc c−  experimental curves are 

compared to the σ εc c−  relationship given by the above expressions [10]. 
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2.3 – Post peak tensile behaviour 

 

Four point bending tests under displacement control were carried out on notched beams 

[14] to assess the post cracking behaviour and to evaluate the fracture energy [26] of 

SFRC. Fibre content of 0, 30, 45 and 60 kg/m
3
, concrete compression strength between 30 

to 60 MPa and fibre aspect ratio (ratio between the fibre length, fl , and the fibre 

diameter, fd ) of 60 and 75 were the main variables analysed. Based on the results obtained, 

the following expressions were proposed for evaluating the fracture energy 

 

 f

fo

f
W

G

G
213.3953.19 +=  (7) 

 

for concrete reinforced with ZP30/.50 fibres and 

 

                                                        827.1159.130.1 f

fo

f
W

G

G
+= , (8) 

 

for concrete reinforced with ZX60/.80 fibres, where foG  is the fracture energy of the 

corresponding plain concrete, which can be evaluated from RILEM recommendations [26]. 

 

The shape of the tensile strain-softening diagram of SFRC was obtained by performing 

numerical simulations of the tests. This numerical simulation revealed [14] that a trilinear 

diagram (see Fig. 2 and Table 1) is appropriate to reproduce the post-peak tensile 

behaviour of SFRC. 
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The values of the characteristic points of the trilinear softening diagram, specified in Table 

1, were also obtained from the numerical simulation of the tests. 

 

 

Table 1. Values for defining the characteristic points of the softening diagram of SFRC. 

 Fibre type 

Parameters ZP30/.50 ZX60/.80 

 Fibre content (kg/m
3
) Fibre content (kg/m

3
) 

 30 45 60 30 45 60 

1ξ ( )310−×  7 – 9 4 - 6 3 - 5 3 - 5 3 - 5 10 - 100 

1α  0.35 - 0.45 0.55 – 0.65 0.6 – 0.65 0.4 – 0.5 0.6 – 0.7 0.65 – 0.75 

2ξ  0.2 – 0.3 0.25 – 0.35 0.3 – 0.4 0.15 – 0.25 0.15 – 0.25 0.3 – 0.5 

2α  0.1 – 0.2 0.15 – 0.25 0.15 – 0.25 0.2 – 0.3 0.25 – 0.35 0.25 – 0.35 

 

 

3 – NUMERICAL MODEL 

 

3.1 - Introduction 

 

In order to simulate the progressive damage induced by plasticity and cracking, the 

concrete shell element thickness is discretized in layers. Each layer is considered in a state 

of plane stress. The concrete shell can be reinforced with conventional smeared steel bars 

or/and steel fibres. The shell element is formulated under the Reissner-Mindlin theory [27], 

using the finite element techniques [14]. 
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The concrete cracking is simulated under the framework of the smeared crack concepts, 

which can be categorised into fixed, multifixed and rotating crack models [14, 28-30]. 

These three models are available in the computational code developed. 

 

According to the present model, the total strain increment of cracked concrete, ∆ε , 

consists of the strain increment in the fracture zone, ∆ε cr , and the strain increment of 

concrete between cracks, ∆ε
ep

co , 

 

                                                          ∆ ∆ ∆ε ε ε=
ep

co cr+ . (9) 

 

In smeared crack models the fracture is distributed over a crack band width, bl , which is 

related to the particular finite element configuration. In the present numerical simulation 

bl  is taken equal to the square root of the area of a Gauss point [31]. 

 

3.2 - Concrete constitutive laws 

 

Stress and strain increment vectors are related by 

 

                                                           
coco

D εσ ∆=∆  (10) 

 

where 
co

D  is the concrete tangent constitutive matrix, 
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co

mbD  is the material in-plane stiffness matrix and 
co

sD  is the material out-of-plane shear 

stiffness matrix. 

 

3.2.1 - Linear elastic uncracked concrete 

 

For the homogeneous, isotropic and linear elastic material, the submatrix 
co

mbD  given in 

(11) is the elastic in-plane stiffness matrix, 
co

embD , , 
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where cυ  is the concrete Poisson coefficient. The transverse shear behaviour is considered 

linear elastic, being the corresponding stiffness matrix given by 
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where cG  is the concrete shear modulus and F=5/6 is a correction shear factor [14]. 
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3.2.2 - Linear elastic cracked concrete 

 

For cracked concrete with concrete between cracks in linear elastic state (ecr), the 

submatrix 
co

mbD  given in (11) is designated by 
co

ecrmbD , , defined by the following expression 

[30]: 
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(14) 

 

where R̂  is a matrix defining the direction of the cracks formed at a sampling point (Fig. 3) 

and 
cr

D̂  is a matrix which accounts for the constitutive law of the cracks. Each crack is 

governed by the following constitutive relationship: 

 

                                                                 ∆ ∆s D e
cr cr cr= , (15) 

 

where ∆s
cr  is the crack stress increment vector (Fig. 3) 

 

                                                           [ ]∆ ∆ ∆s s s
cr

nn

cr

nt

cr
T

= , (16) 

 

∆e
cr  is the crack strain increment vector 

 

                                                            [ ]∆ ∆ ∆e e
cr

nn

cr

nt

cr
T

= γ  (17) 

 

and 
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is the crack stiffness matrix, where DI

cr  and DII

cr  are the fracture mode I and the fracture 

mode II stiffness modulus of smeared cracks, respectively. The DI

cr  is characterised by the 

fracture parameters [6, 30], namely, the tensile strength, f ct , the fracture energy, G f , the 

shape of the softening law and the crack band width, bl . Fibre reinforcement mechanisms 

are reflected, mainly, on the fracture energy and on the shape of the softening branch. For 

current fibre contents used in the concrete applications, the remainder fracture parameters 

are only marginally affected by fibre addition. The fracture energy and the shape of the 

softening branch of SFRC were evaluated from the data presented in section 2.3. 

 

Residual strain at crack closing is higher on fibrous concrete than on plain concrete [21]. 

To model this behaviour it is proposed the following relationship (Fig. 2): 

 

                                                                   e enn l
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nn m
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, ,= η , (19) 

where enn m
cr

,  is the maximum attained crack strain normal to the crack and η  is given by, 
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A value of 165 can be advanced to C parameter, but more experimental research is needed 

to calibrate this parameter. According to this expression, the residual strain increases with 
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enn m
cr

,  and with the fibre percentage and fibre aspect-ratio, which is in accordance with the 

trend showed by the reduced experimental data available. 

 

The fracture mode II modulus, DII
cr , is obtained from the expression [30]:

 

 

                                                                D GII
cr

c=
−

β

β1
, (21) 

 

where β  is the shear retention factor determined from 

 

                                                                   

p

cr

unn

cr

nn

e

e












−=

,

1β (p=1, 2 or 3) (22) 

 

for plain concrete, with enn u

cr

,  being the ultimate normal crack strain (Fig. 2), and 
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for SFRC. Taking into account the experimental data available [32], it is proposed a value 

of 980 for the M parameter. According to this expression, the shear retention factor 

increases with the fibre percentage and with the fibre aspect-ratio, and decreases with the 

crack strain, which gives the trend revealed by the experimental data. 
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The shear retention factor for the conventionally reinforced concrete is evaluated from the 

expression proposed by Cervenka [31] 

 
2

1

ln

C

C

e
cr

nn










−=β  (24) 

with 

 
015.0

005.0
57

,

1

−
+=

efeq
C

ρ
,    

015.0

005.0
5.210

,

2

−
−=

efeq
C

ρ
, (25) 

 

where efeq ,ρ  is the equivalent effective reinforcement [14], 

 ρ ρ θeq ef i ef i
i

nr

, , cos=
=

∑ 4

1

  (26) 

 

nr is the number of sets of reinforcing layers crossing the crack, ρi ef,  is the effective 

reinforcing ratio [24] of layer i and θi  is the angle between the reinforcing layer i and the 

crack direction. 

 

3.2.3 - Elasto-plastic uncracked concrete 

 

For elasto-plastic (ep) uncracked concrete, the in-plane material stiffness matrix 
co

mbD  given 

in (11) is defined by 
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where a is the flow vector and h is the hardening modulus [33]. The hardening modulus 

depends on the equivalent stress-plastic strain relationship used for concrete in 

compression. 

 

In the plasticity approach, concrete strain, 
coε , is decomposed into an elastic, 

co

eε , and a 

plastic, 
co

pε , contribution. Inserting this decomposition into the expression (1) holds 
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with 
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c

E

E
A 1= ,   q p A= − −1 ,   

co

cciEB 1ε= . (29) 

 

For a given concrete plastic strain, the concrete stress is computed from (28) using the 

Newton-Raphson method. The concrete hardening modulus is obtained by deriving Eq. 

(28) in order to the plastic strain. 

 

For the fibre contents used in industrial floors, experimental research has shown [15,16] 

that the shape of the yield surface of SFRC under biaxial stress state is similar to the yield 

surface of the corresponding plain concrete. The yield surface proposed by Figueiras [34] 
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is used in the present work for plain and fibrous concrete, where ( )σ c ck  is the equivalent 

compressive stress, with kc  being the hardening parameter associated to the equivalent 

plastic strain rate or to the plastic work rate, P
c
 is the projection matrix [35] 
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and p
c
 is the projection vector, 
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c
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Scalar parameters a, b, c and d are defined as 

 

 a =








0 355

2

2
.

, b =






 −

0 355

2

1355

2

2
. .

, c = ×3 1355. , d =
0 355

2

.
. (33) 

 

3.2.4 - Elasto-plastic cracked concrete 

 

For cracked concrete with concrete between cracks in elasto-plastic behaviour (epcr) the 

submatrix 
co

mbD  given in (11) is obtained from the following expression: 
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where 
co

epmbD ,  was defined in Eq. (27). 

 

3.2.5 –Tensile behaviour of reinforced concrete layers 

 

The relative position between a concrete layer and a reinforcing layer defines which 

diagram will be used to simulate the tensile behaviour of the concrete layer. The behaviour 

of a concrete layer will be simulated by a tension stiffening diagram if its middle surface is 

positioned within the effective tension area [24] (Fig. 4). The behaviour of the other 

concrete layers will be simulated by a softening diagram (Section 2.3). 

 

A tension-stiffening model was developed [14] for laminar concrete structures reinforced 

with sets of smeared steel bars. These sets can have different orientation and properties. 

The model is based on the principles proposed by Link et al. [36] and Massicotte et 

al. [37], and can be represented by the post-peak stress-strain trilinear diagram illustrated in 

Fig. 5. The expressions defining the coordinates of the points A, B and C were deduced in 

a previous work [14]. 

 

3.3 - Constitutive relationship for the reinforcement 

 

Reinforcement of smeared steel bars added to plain or fibrous concrete can be modelled by 

a linear-parabola diagram or by a multilinear diagram [14]. The material non-linear 

behaviour of steel bars is reproduced under the elasto-plasticity framework [14]. 
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3.4 - Soil 

 

The soil is simulated by springs orthogonal to the laminate structure (Figure 6). The 

tangent soil reaction modulus is usually evaluated from plate-loading tests [11]. The results 

of these tests have revealed that soil pressure–soil settlement relationship may be simulated 

by a multilinear or linear-parabola diagram [14]. The soil contribution to the stiffness of the 

whole structural system is computed by adding the soil stiffness matrix, 

 

                                                 
( )

( )∫=
eA

s

Te

so dANkNK  (35) 

 

to the slab stiffness, where ( )eA  is the area of a finite element, N  is a vector with the 

dimension of the number of element nodes. The terms of N  are the values of the element 

shape functions. In Eq. (35) sk  is the tangent soil reaction modulus. The soil stiffness 

contributes only to the rigidity terms of the degrees-of-freedom orthogonal to the laminate 

structure. The friction between the slab and the soil is neglected. 

 

If in a given sampling point the concrete slab loses the contact with the soil (Fig. 7), i.e., if 

the displacement orthogonal to the slab middle surface, 3u , is less than the plastic soil 

settlement, spa , the part of the soil corresponding to this sampling point does not contribute 

to the stiffness of the slab-soil system. These procedure accounts for the zones where the 

soil has plastic settlements (zone A in Fig. 7), as well as, for the zones where the slab lift 

up with soil in linear elastic state (zone B in Fig. 7). 
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4 - MODEL APPRAISAL 

 

In a previous work [11] the model performance was already assessed, simulating the tests 

carried out with sets of slabs of plain concrete, slabs reinforced with wire mesh and slabs 

reinforced with 30 and 45 kg/m
3
 of ZX60/.80 hooked ends steel fibres. The purpose of the 

present section is to evaluate the model performance by simulating the behaviour of SFRC 

slabs supported on other materials such as rubber and cork. For experimental research in 

laboratory, these materials are easier to deal with than soil, being a useful alternative. 

 

Falkner and Teutsch [12] have carried out tests with 3000×3000×150 mm concrete slabs 

supported on a 60 mm thick elastic subbase of cork and rubber. The slabs were loaded via a 

hydraulic jack, acting on a 120×120 mm
2
 steel plate placed at the centre of the slab. The 

two experimental tests carried out with concrete slabs reinforced with 20 kg/m
3
 of 60/.80 

hooked ends Dramix steel fibres [17] are simulated with the numerical model described in 

the present work. The slab designated by P3 was supported on elastic cork subbase. In slab 

named P4, the elastic cork subbase was replaced by a layer of rubber mats of the same 

thickness, in the load applied zone over an area of 1.5×1.5 m
2
. The reaction modulus of the 

cork and rubber subbase was evaluated from plate loading tests on specimens of 500×500 

mm, with a plate of 150 mm diameter. The values of the material properties for numerical 

simulation are included in Table 2. These values were obtained from the experimental data 

published [12] (see also Fig. 8). 

 

Taking the symmetry of the problem, a quarter of the slab is discretized by eight-noded 

isoparametric Serendipity elements, as shown in Fig. 9. The slab thickness is discretized in 
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10 layers of equal thickness. The stiffness and the internal forces of the slab-soil structural 

system are evaluated using 2×2 Gauss points per finite element. 

 

 

Table 2. Values of the material properties. 

Concrete (Fig. 2) Soil (Fig. 8) 

Common data for 

P3 and P4 slabs 

Specific data for 

P3 slab 

Specific data for 

P4 slab 

Cork subbase Rubber subbase 

υ =0.15 

coε =2.2×10
-3

 

fW =0.83 

1α =0.4 

1ξ =0.005 

2α =0.25 

2ξ =0.1 

ciE =31000MPa 

cf =35 MPa 

ctf =2.5 MPa 

fG =0.75 N/mm 

ciE =32500MPa 

cf =40 MPa 

ctf =3.0 MPa 

fG =0.83 N/mm 

slk =0.035 N/mm
3
 

1sp =0.1 MPa 

1sk =0.03 N/mm
3
 

2sp =0.25 MPa 

2sk =0.025 N/mm
3
 

sup =0.5 MPa 

slk =0.055 N/mm
3
 

1sp =0.1 MPa 

1sk =0.05 N/mm
3
 

2sp =0.4 MPa 

2sk =0.045 N/mm
3
 

sup =1.0 MPa 

 

 

In Figs 10 and 11, the experimental and the numerical load-central deflection relationship 

for the slabs P3 and P4 are illustrated. The comparison with the experimental data shows a 

very good agreement. 

 

Figs 12 and 13 represent the deflection of slabs P3 and P4 along the 1x  axis (Fig. 9) for the 

selected loading levels. The deflection is not symmetric due to the non-symmetric crack 

pattern observed in the experiments. The deflection shape of slab P3 is predicted quite well 

for all the load levels, except for 220 kN load level. Observing the force-deflection 



 20

relationship of slab P3 (Fig. 10), it is noted that, above the load of 220 kN, the deflection 

increases significantly for a small load increment. Due to this fact, the deflection for load 

level of 230 kN is also included in Figure 12. It can be conclude that the deflection 

registered experimentally for 220 kN is reproduced with reasonable accuracy in the range 

220-230 kN in the numerical simulation. 

 

In slab P4, apart from the left branch of the deflection along the 1x  axis for load level of 

345 kN, the remainder deflections are predicted quite well. The smaller deflection 

predicted by the numerical model in –1500 ≤ 1x  ≤ 0 mm for load level of 345 kN (Fig. 13) 

is due to the crack pattern developed in the experiment [12]. The deflection in the negative 

1x  coordinate is smaller, because the failure crack nº 3 (Figure 14) is far from the 1x  axis 

comparing to the failure crack nº 1. The direction of the crack nº 1 is similar to the 

direction of the rupture crack determined by the numerical model, as it can be observed in 

Figs 14 and 15. In Fig. 15, only the cracks completely open (where the fracture energy was 

exhausted) are depicted. A crack is represented by a rectangle with thickness proportional 

to crack opening ( b

cr

nne l ) 

 

The deflections registered on displacement transducers placed at corners (50 mm apart 

from the corner – point P in Fig. 9) in slab P3 for load levels of 60, 120, 180 and 220 kN 

are depicted in Fig. 16. The relationship between the applied force and the displacement at 

point P obtained with the numerical model is also illustrated in Fig. 16. A good agreement 

between experimental and numerical results is observed. 
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4 - CONCLUSIONS 

 

A numerical model for the non-linear analysis of steel fibre reinforced concrete slabs 

supported on soil was developed. Using experimental data, the main features of the fibre 

reinforcement were introduced in the concrete constitutive laws, mainly in the tension and 

in the compression post-peak behaviour. More experiments should be carried out in order 

to tune the constitutive laws proposed. The experimental research performed was restricted 

to two types of fibres only. 

 

The behaviour of the uncracked concrete and concrete between cracks was simulated under 

the elasto-plasticity framework. The cracking behaviour was reproduced using a smeared 

multifixed crack model. The soil or other base material supporting the concrete slab was 

simulated by distributed springs orthogonal to the concrete slab middle surface. An 

elasto-plastic model was used to modulate the non-linear behaviour of the springs. The loss 

of contact between the base and the slab was accounted for. 

 

The model performance was evaluated using the experimental results given by Falkner and 

Teutsch. A good agreement between the experimental and the numerical results was 

obtained. 

 

5 - REFERENCES 

 

1. Westergaard, H.M., New formulas for stresses in concrete pavements of airfield. 

Transactions of ASCE, 1948, 113(2340), 425-444. 



 22

2. Losberg, A., Design methods for structurally reinforced concrete pavements, 

Transactions of Chalmers University of Technology Gothenburg, Sweden, 1961. 

3. Meyerhof, G.G., Load carrying capacity of concrete pavements. Jour. Soil Mech. and 

Found. Div., ASCE, 1962, 88(3), 89-115. 

4. Baumann, R.A. and Weisgerber, F.E., Yield line analysis of slabs-on-grade. Jour. Struct. 

Engrg. ASCE, 1983, 109(7), 1553-1568. 

5. Shentu, L., Jiang, D. and Hsu, C.-T.T., Load-carrying capacity for concrete slabs on 

grade. Jour. Struct. Engrg., ASCE, 1997, 123(1), 95-103. 

6. Bazant, Z.P. and Oh, B.H., Crack band theory for fracture of concrete. Materials and 

Structures, RILEM, 1983, 16(93), 155-177. 

7. Nanni, A. and Johari, A., RCC pavement reinforced with steel fibers. Concrete 

International, April 1989, 64-69. 

8. Tatnall, P.C. and Kuitenbrouwer, L., Steel fiber reinforced concrete in industrial floors. 

Concrete International, December 1992, 43-47. 

9. ACI 544.1R-96, State-of-the-Art Report on Fiber Reinforced Concrete, ACI, 1997. 

10. Barros, J.A.O. and Figueiras, J.A., Flexural behavior of steel fiber reinforced concrete: 

testing and modelling. Journal of Materials in Civil Engineering, ASCE. 1999, 11(4), 

331-339. 

11. Barros, J.A.O. and Figueiras, J.A., Experimental behaviour of fibre concrete slabs on 

soil. Journal Mechanics of Cohesive-frictional Materials, 1998, 3, 277-290. 

12. Falkner, H. and Teutsch, M., Comparative investigations of plain and steel fibre 

reinforced industrial ground slabs, Institut fur Baustoffe, Massivbau und brandschutz, 

1993, nº 102. 

13. German Concrete Association, Recommendations: Fundamental Principles for the 

Evaluation of Steel Fibre Concrete in Tunnel Construction, Edition September 1992. 



 23

14. Barros, J.A.O., Comportamento do betão reforçado com fibras - análise experimental e 

simulação numérica, PhD Thesis, Civil Eng. Dept., Faculty of Engineering, University 

of Porto, Portugal, 1995 (in Portuguese). 

15. Yin, W.S., Su, E.C.M., Mansur, M.A. and Hsu, T.T.C., Biaxial Tests of plain and fiber 

concrete. ACI Materials Journal, 1989, 86(3), 236-243. 

16. Traina, L.A. and Mansour, S.A., Biaxial strength and deformational behaviour of plain 

and steel fiber concrete. ACI Materials Journal, 1991, 88(3), 354-362. 

17. Dramix fibres hors fils d’acier pour reinforcement de betón et mortier, Specification, 

Bekaert N.V., October, 1991. 

18. Balaguru, P.N. and Shah, S.P., Fiber reinforced cement composites, McGraw-Hill 

International Editions, Civil Engineering Series, 1992. 

19. Trottier, J.-F. and Banthia, N., Toughness characterization of steel-fiber reinforced 

concrete. J. Materials Civ. Engrg., ASCE, 1994, 6(2) 264-289. 

20. Gopalaratnam, V.S., Shah, S.P., Batson, G.B., Criswell, M.E., Ramakrishnan, V., 

Wecharatana, M., Fracture toughness of fiber reinforced concrete. ACI Materials 

Journal, July-August 1991, 88(4), 339-353. 

21. Gopalaratnam, V.S. and Shah, S.P., Tensile failure of steel fibre-reinforced mortar. 

Jour. of Eng. Mech., ASCE, May 1987, 113(5), 635-653. 

22. Fanella, D.A. and Naaman, A., Stress-strain properties of fiber reinforced mortar in 

compression. ACI Journal, 1985, 82(4), 475-483. 

23. Ezeldin, A.S. and Balaguru, P.N., Normal- and high-strength fiber-reinforced concrete 

under compression. J. Materials in Civil Engrg, ASCE, 1993, 4(4), 415-428. 

24. CEB-FIP Model Code, Design code, Bulletin d’Information CEB Lausanne, 

Switzerland, 1993. 



 24

25. Wee, T.H., Chin, M.S. and Mansur, M.A., Stress-strain relationship of high-strength 

concrete in compression. J. Materials  Civ. Engrg., ASCE, 1996, 8(2), 70-76. 

26. RILEM, Draft Recommendation, 50-FMC Committee Fracture Mechanics of Concrete, 

Determination of fracture energy of mortar and concrete by means of three-point bend 

tests on notched beams. Materials and Structures, 1985, 18(106), 285-290. 

27. Reissner, E., The effect of transverse shear deformation on the bending elastic plates. 

Jour. Appl. Mech., 1945, 12, 69-76. 

28. De Borst, R. and Nauta, P., Non-orthogonal cracks in a smeared finite element model. 

Eng. Computations, March 1985, 2, 35-46. 

29. De Borst, R., Non-linear analysis of frictional materials, Ph.D. Thesis, Delft Univ. of 

Technology, 1986. 

30. Rots, J.G., Computational modeling of concrete fracture, Ph.D. Thesis, Delft Univ. of 

Technology, 1988. 

31. Cervenka, V., Pukl, H. and Eligehausen, R., Computer simulation of anchoring 

technique and design of concrete structures. Proc. Second Intern. Conf. on Computer 

Aided Analysis and Desing of Concrete Structures, Zell am See, Austria, 1990, 1-19. 

32. Swamy, R., Jones, R. and Chiam, T., Shear transfer in steel fiber reinforced concrete. 

Fiber Reinforced Concrete Properties and Applications, Eds: S.P. Shah, G.B. Batson, 

SP-105, 1987, 565-592. 

33. Hofstetter, G. and Mang, H.A., Computational mechanics of reinforced concrete 

structures, Ed. Vieweg, 1995. 

34. J.A. Figueiras, Ultimate load analysis of anisotropic and reinforced concrete plates 

and shells, Ph.D. Thesis, C/Ph/72/83, Uni. College of Swansea, 1983. 

35. Feenstra, P.H., Computational aspects of biaxial stress in plain and reinforced 

concrete, Ph.D. Thesis Delft Univ. of Technology, 1993. 



 25

36. Link, R.A., Elwi, A.E. and Scanlon, A., Biaxial tension stiffening due to generally 

oriented reinforced layers. Jour. of Eng. Mech., ASCE, August 1989, 115(8), 

1647-1662. 

37. Massicote, B., Elwi, A.E. and J.G. MacGregor, Tension-stiffening model for planar 

reinforced concrete members. Jour. of Struct. Eng., ASCE, November 1990, 116(11), 

3039-3058. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 26

 

 

 

Experimental

Model

30.024.012.0 18.06.00.0

10.0

15.0

20.0

30.0

35.0

40.0

25.0

0.0

5.0

( )MPa

cσ

( )εc 10 3−
(a)

 

 

Experimental

Model

30.024.012.0 18.06.00.0

10.0

15.0

20.0

30.0

35.0

40.0

25.0

0.0

5.0

( )MPa

cσ

( )εc 10 3−
(b)

 

Fig. 1. Analytical versus experimental compression stress-strain curves for concrete reinforced with 30 kg/m3 

(a) and 60 kg/m3 (b) of ZX60/.80 fibers [10]. 
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Fig. 2. Trilinear softening diagram for hooked-ends steel fibre reinforced concrete ( bl  is the width of the 

fracture process zone). 
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Fig. 3. Crack stress and crack strain components. 
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Fig. 4. Effective tension area according to CEB-FIP Model Code 1990 [24]. 
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Fig. 5. Tension-stiffening diagram [14]. 
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Fig. 6. The soil is simulated by spring elements, orthogonal to the concrete slab middle surface. 
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Fig. 7. The loss of contact between the slab and the soil is accounted for. 
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Fig. 8 - Pressure–settlement relationship used to simulate the soil behaviour. 
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Fig. 9. Finite element mesh. 
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Fig. 10. Force-deflection relationship at the central point of slab P3. 
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Fig. 11. Force-deflection relationship at the central point of slab P4. 
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Fig. 12. Deflection of slab P3 along 1x  axis. 
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Fig. 13. Deflection of slab P4 along 1x  axis. 
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Fig. 14. Crack pattern of test slab P4 after failure (experimental). 
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Fig. 15. Crack pattern at bottom layer of test slab P4 for ultimate load (numerical). 
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Fig. 16. Deflection at point P (Fig. 9). 
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Fig. 1. Analytical versus experimental compression stress-strain curves for concrete reinforced with 30 kg/m3 

(a) and 60 kg/m3 (b) of ZX60/.80 fibers [10]. 

 

Fig. 2. Trilinear softening diagram for hooked-ends steel fibre reinforced concrete ( bl  is the width of the 

fracture process zone). 

 

Fig. 3. Crack stress and crack strain components. 

 

Fig. 4. Effective tension area according to CEB-FIP Model Code 1990 [24]. 

 

Fig. 5. Tension-stiffening diagram [14]. 

 

Fig. 6. The soil is simulated by spring elements orthogonal to the concrete slab middle surface. 

 

Fig. 7. The loss of contact between the slab and the soil is accounted for. 

 

Fig. 8 - Pressure–settlement relationship used to simulate the soil behaviour. 

 

Fig. 9. Finite element mesh. 

 

Fig. 10. Force-deflection relationship at the central point of slab P3. 

 

Fig. 11. Force-deflection relationship at the central point of slab P4. 

 

Fig. 12. Deflection of slab P3 along 1x  axis. 

 

Fig. 13. Deflection of slab P4 along 1x  axis. 

 

Fig. 14. Crack pattern of test slab P4 after failure (experimental). 
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Fig. 15. Crack pattern at bottom layer of test slab P4 for ultimate load (numerical). 

 

Fig. 16. Deflection at point P (see fig. 9). 

 


