1,456 research outputs found

    Impact of Si nanocrystals in a-SiOx<Er> in C-Band emission for applications in resonators structures

    Full text link
    Si nanocrystals (Si-NC) in a-SiOx were created by high temperature annealing. Si-NC samples have large emission in a broadband region, 700nm to 1000nm. Annealing temperature, annealing time, substrate type, and erbium concentration is studied to allow emission at 1550 nm forsamples with erbium. Emission in the C-Band region is largely reduced by the presence of Si-NC. This reduction may be due to less efficient energy transfer processes from the nanocrystals than from the amorphous matrix to the Er3+ ions, perhaps due to the formation of more centro-symmetric Er3+ sites at the nanocrystal surfaces or to very different optimal erbium concentrations between amorphous and crystallized samples.Comment: 3 pages, 4 figure

    Classical and quantum-mechanical treatments of nonsequential double ionization with few-cycle laser pulses

    Full text link
    We address nonsequential double ionization induced by strong, linearly polarized laser fields of only a few cycles, considering a physical mechanism in which the second electron is dislodged by the inelastic collision of the first electron with its parent ion. The problem is treated classically, using an ensemble model, and quantum-mechanically, within the strong-field and uniform saddle-point approximations. In the latter case, the results are interpreted in terms of "quantum orbits", which can be related to the trajectories of a classical electron in an electric field. We obtain highly asymmetric electron momentum distributions, which strongly depend on the absolute phase, i.e., on the phase difference between the pulse envelope and its carrier frequency. Around a particular value of this parameter, the distributions shift from the region of positive to that of negative momenta, or vice-versa, in a radical fashion. This behavior is investigated in detail for several driving-field parameters, and provides a very efficient method for measuring the absolute phase. Both models yield very similar distributions, which share the same physical explanation. There exist, however, minor discrepancies due to the fact that, beyond the region for which electron-impact ionization is classically allowed, the yields from the quantum mechanical computation decay exponentially, whereas their classical counterparts vanish.Comment: 12 pages revtex, 12 figures (eps files

    Resonant structures based on amorphous silicon sub-oxide doped with Er3+ with silicon nanoclusters for an efficient emission at 1550 nm

    Full text link
    We present a resonant approach to enhance 1550nm emission efficiency of amorphous silicon sub-oxide doped with Er3+ (a-SiOx) layers with silicon nanoclusters (Si-NC). Two distinct techniques were combined to provide a structure that allowed increasing approximately 12x the 1550nm emission. First, layers of SiO2 were obtained by conventional wet oxidation and a-SiOx matrix was deposited by reactive RF co-sputtering. Secondly, an extra pump channel (4I15/2 to 4I9/2) of Er3+ was created due to Si-NC formation on the same a-SiOx matrix via a hard annealing at 1150 C. The SiO2 and the a-SiOx thicknesses were designed to support resonances near the pumping wavelength (~500nm), near the Si-NC emission (~800nm) and near the a-SiOx emission (~1550nm) enhancing the optical pumping process.Comment: 14 pages, 4 figures, in submissio

    The social side of software platform ecosystems

    Get PDF
    Software ecosystems as a paradigm for large-scale software development encompass a complex mix of technical, business, and social aspects. While significant research has been conducted to understand both the technical and business aspects, the social aspects of software ecosystems are less well understood. To close this gap, this paper presents the results of an empirical study aimed at understanding the influence of social aspects on developers' participation in software ecosystems. We conducted 25 interviews with mobile software developers and an online survey with 83 respondents from the mobile software development community. Our results point out a complex social system based on continued interaction and mutual support between different actors, including developers, friends, end users, developers from large companies, and online communities. These findings highlight the importance of social aspects in the sustainability of software ecosystems both during the initial adoption phase as well as for long-term permanence of developers.Cleidson R. B. de Souza, Fernando Figueira Filho, Müller Miranda, Renato Pina Ferreira, Christoph Treude, Leif Singe

    Quantum phase transition triggering magnetic BICs in graphene

    Full text link
    Graphene hosting a pair of collinear adatoms in the phantom atom configuration has pseudogap with cubic scaling on energy, Δε3\Delta\propto|\varepsilon|^{3} which leads to the appearance of spin-degenerate bound states in the continuum (BICs) [Phys. Rev. B 92, 045409 (2015)]. In the case when adatoms are locally coupled to a single carbon atom the pseudogap scales linearly with energy, which prevents the formation of BICs. In this Letter, we explore the effects of non-local coupling characterized by the Fano factor of interference q0,q_{0}, tunable by changing the slope of the Dirac cones in the graphene band-structure. We demonstrate that three distinct regimes can be identified: i) for q0<qc1q_{0}<q_{c1} (critical point) a mixed pseudogap Δε,ε2\Delta\propto|\varepsilon|,|\varepsilon|^{2} appears yielding a phase with spin-degenerate BICs; ii) near q0=qc1q_{0}=q_{c1} when Δε2\Delta\propto|\varepsilon|^{2} the system undergoes a quantum phase transition in which the new phase is characterized by magnetic BICs and iii) at a second critical value q0>qc2q_{0}>q_{c2} the cubic scaling of the pseudogap with energy Δε3\Delta\propto|\varepsilon|^{3} characteristic to the phantom atom configuration is restored and the phase with non-magnetic BICs is recovered. The phase with magnetic BICs can be described in terms of an effective intrinsic exchange field of ferromagnetic nature between the adatoms mediated by graphene monolayer. We thus propose a new type of quantum phase transition resulting from the competition between the states characterized by spin-degenerate and magnetic BICs

    Time evolution of non-Hermitian Hamiltonian systems

    Get PDF
    We provide time-evolution operators, gauge transformations and a perturbative treatment for non-Hermitian Hamiltonian systems, which are explicitly time-dependent. We determine various new equivalence pairs for Hermitian and non-Hermitian Hamiltonians, which are therefore pseudo-Hermitian and in addition in some cases also invariant under PT-symmetry. In particular, for the harmonic oscillator perturbed by a cubic non-Hermitian term, we evaluate explicitly various transition amplitudes, for the situation when these systems are exposed to a monochromatic linearly polarized electric field.Comment: 25 pages Latex, 1 eps figure, references adde

    The periodic Anderson model from the atomic limit and FeSi

    Get PDF
    The exact Green's functions of the periodic Anderson model for UU\to \infty are formally expressed within the cumulant expansion in terms of an effective cumulant. Here we resort to a calculation in which this quantity is approximated by the value it takes for the exactly soluble atomic limit of the same model. In the Kondo region a spectral density is obtained that shows near the Fermi surface a structure with the properties of the Kondo peak. Approximate expressions are obtained for the static conductivity % \sigma (T) and magnetic susceptibility χ(T)\chi (T) of the PAM, and they are employed to fit the experimental values of FeSi, a compound that behaves like a Kondo insulator with both quantities vanishing rapidly for T0T\to 0. Assuming that the system is in the intermediate valence region, it was possible to find good agreement between theory and experiment for these two properties by employing the same set of parameters. It is shown that in the present model the hybridization is responsible for the relaxation mechanism of the conduction electrons.Comment: 26 pages and 8 figure

    Heterocyclic Aldehydes Based on Thieno[3,2-b]thiophene Core: Synthesis and Preliminary Studies as Ion Optical Chemosensors

    Get PDF
    Heterocyclic aldehydes show a variety of optical properties and the versatility of their reactivity allows them to yield a wide range of more complex compounds, with application in areas such as medicinal, materials and supramolecular chemistry. The biological and environmental relevance of certain molecules and ions turns them into targets for the design of molecular recognition systems. Recently, heterocyclic aldehydes have been reported in the literature as ion chemosensors. Following the group's work on optical chemosensors, for the detection and quantification of ions and molecules with environmental and medicinal relevance, this work reports the synthesis and characterization of two heterocyclic aldehydes based on the thieno[3,2-b]thiophene core, by Suzuki coupling, as well as the synthesis of the corresponding precursors. Preliminary chemosensory studies for the synthesized heterocyclic aldehydes in the presence of selected cations were also performed, in solution, in order to determine their potential application as optical chemosensors

    Attosecond electron thermalization by laser-driven electron recollision in atoms

    Get PDF
    Nonsequential multiple ionization of atoms in intense laser fields is initiated by a recollision between an electron, freed by tunneling, and its parent ion. Following recollision, the initial electron shares its energy with several bound electrons. We use a classical model based on rapid electron thermalization to interpret recent experiments. For neon, good agreement with the available data is obtained with an upper bound of 460 attoseconds for the thermalization time.Comment: 5 pages revtex and 4 figures (eps files
    corecore