1,807 research outputs found

    The Cumulant Expansion for the Anderson Lattice with Finite U: The Completeness Problem

    Full text link
    ``Completeness'' (i.e. probability conservation) is not usually satisfied in the cumulant expansion of the Anderson lattice when a reduced state space is employed for U→∞U\to \infty . To understand this result, the well known ``Chain'' approximation is first calculated for finite UU, followed by taking U→∞U\to \infty . Completeness is recovered by this procedure, but this result hides a serious inconsistency that causes completeness failure in the reduced space calculation. Completeness is satisfied and the inconsistency is removed by choosing an adequate family of diagrams. The main result of this work is that using a reduced space of relevant states is as good as using the whole space.Comment: Latex 22 pages, 6 figures with postscript files attached, accepted for publication in the Int. J. of Mod. Phys. B (1998). Subject field : Strongly Correlated System

    Convergence of numerical schemes for short wave long wave interaction equations

    Full text link
    We consider the numerical approximation of a system of partial differential equations involving a nonlinear Schr\"odinger equation coupled with a hyperbolic conservation law. This system arises in models for the interaction of short and long waves. Using the compensated compactness method, we prove convergence of approximate solutions generated by semi-discrete finite volume type methods towards the unique entropy solution of the Cauchy problem. Some numerical examples are presented.Comment: 31 pages, 7 figure

    Existence criteria for stabilization from the scaling behaviour of ionization probabilities

    Get PDF
    We provide a systematic derivation of the scaling behaviour of various quantities and establish in particular the scale invariance of the ionization probability. We discuss the gauge invariance of the scaling properties and the manner in which they can be exploited as consistency check in explicit analytical expressions, in perturbation theory, in the Kramers-Henneberger and Floquet approximation, in upper and lower bound estimates and fully numerical solutions of the time dependent Schroedinger equation. The scaling invariance leads to a differential equation which has to be satisfied by the ionization probability and which yields an alternative criterium for the existence of atomic bound state stabilization.Comment: 12 pages of Latex, one figur

    Resynchronizing classes of word relations

    Get PDF
    A natural approach to defining binary word relations over a finite alphabet A is through two-tape finite state automata, which can be seen as regular language L over {1,2} x A, where (i,a) is interpreted as reading letter a from tape i. Thus, a word w of the language L denotes the pair (u_1,u_2) in A* x A* in which u_i is the projection of w onto i-labelled letters. While this formalism defines the well-studied class of Rational relations (a.k.a. non-deterministic finite state transducers), enforcing restrictions on the reading regime from the tapes, that we call synchronization, yields various sub-classes of relations. Such synchronization restrictions are imposed through regular properties on the projection of the language onto {1,2}. In this way, for each regular language C contained in {1,2}*, one obtains a class Rel(C) of relations, such as the classes of Regular, Recognizable, or length-preserving relations, as well as (infinitely) many other classes. We study the problem of containment for synchronized classes of relations: given C,D subsets of {1,2}*, is Rel(C) contained in Rel(D)? We show a characterization in terms of C and D which gives a decidability procedure to test for class inclusion. This also yields a procedure to re-synchronize languages from {1,2} x A preserving the denoted relation whenever the inclusion holds

    The quantum brachistochrone problem for non-Hermitian Hamiltonians

    Get PDF
    Recently Bender, Brody, Jones and Meister found that in the quantum brachistochrone problem the passage time needed for the evolution of certain initial states into specified final states can be made arbitrarily small, when the time-evolution operator is taken to be non-Hermitian but PT-symmetric. Here we demonstrate that such phenomena can also be obtained for non-Hermitian Hamiltonians for which PT-symmetry is completely broken, i.e. dissipative systems. We observe that the effect of a tunable passage time can be achieved by projecting between orthogonal eigenstates by means of a time-evolution operator associated with a non-Hermitian Hamiltonian. It is not essential that this Hamiltonian is PT-symmetric
    • 

    corecore