7 research outputs found

    Going With the Flow or Against the Grain? The Promise of Vegetation for Protecting Beaches, Dunes, and Barrier Islands From Erosion

    Get PDF
    Coastlines have traditionally been engineered to maintain structural stability and to protect property from storm‐related damage, but their ability to endure will be challenged over the next century. The use of vegetation to reduce erosion on ocean‐facing mainland and barrier island shorelines – including the sand dunes and beaches on these islands – could be part of a more flexible strategy. Although there is growing enthusiasm for using vegetation for this purpose, empirical data supporting this approach are lacking. Here, we identify the potential roles of vegetation in coastal protection, including the capture of sediment, ecological succession, and the building of islands, dunes, and beaches; the development of wave‐resistant soils by increasing effective grain size and sedimentary cohesion; the ability of aboveground architecture to attenuate waves and impede through‐flow; the capability of roots to bind sediments subjected to wave action; and the alteration of coastline resiliency by plant structures and genetic traits. We conclude that ecological and engineering practices must be combined in order to develop a sustainable, realistic, and integrated coastal protection strategy

    Going with the flow or against the grain? The promise of vegetation for protecting beaches, dunes, and barrier islands from erosion

    Get PDF
    Coastlines have traditionally been engineered to maintain structural stability and to protect property from storm‐related damage, but their ability to endure will be challenged over the next century. The use of vegetation to reduce erosion on ocean‐facing mainland and barrier island shorelines – including the sand dunes and beaches on these islands – could be part of a more flexible strategy. Although there is growing enthusiasm for using vegetation for this purpose, empirical data supporting this approach are lacking. Here, we identify the potential roles of vegetation in coastal protection, including the capture of sediment, ecological succession, and the building of islands, dunes, and beaches; the development of wave‐resistant soils by increasing effective grain size and sedimentary cohesion; the ability of aboveground architecture to attenuate waves and impede through‐flow; the capability of roots to bind sediments subjected to wave action; and the alteration of coastline resiliency by plant structures and genetic traits. We conclude that ecological and engineering practices must be combined in order to develop a sustainable, realistic, and integrated coastal protection strategy

    Transformation of Infragravity Waves during Hurricane Overwash

    No full text
    International audienceInfragravity (IG) waves are expected to contribute significantly to coastal flooding and sediment transport during hurricane overwash, yet the dynamics of these low-frequency waves during hurricane impact remain poorly documented and understood. This paper utilizes hydrodynamic measurements collected during Hurricane Harvey (2017) across a low-lying barrier-island cut (Texas, U.S.A.) during sea-to-bay directed flow (i.e., overwash). IG waves were observed to propagate across the island for a period of five hours, superimposed on and depth modulated by very-low frequency storm-driven variability in water level (5.6 min to 2.8 h periods). These sea-level anomalies are hypothesized to be meteotsunami initiated by tropical cyclone rainbands. Estimates of IG energy flux show that IG energy was largely reduced across the island (79-86%) and the magnitude of energy loss was greatest for the lowest-frequency IG waves (0.01 Hz). Assuming this pattern of nonlinear energy exchange persists across the wide and downward sloping barrier-island cut, it likely contributes to the observed frequency-dependence of cross-barrier IG energy losses during this relatively low surge event (<1 m)

    Meteotsunamis Accompanying Tropical Cyclone Rainbands During Hurricane Harvey

    No full text
    Meteotsunami waves can be triggered by atmospheric disturbances accompanying tropical cyclone rainbands (TCRs) before, during, and long after a tropical cyclone (TC) makes landfall. Due to a paucity of high-resolution field data along open coasts during TCs, relatively little is known about the atmospheric forcing that generate and resonantly amplify these ocean waves, nor their coastal impact. This study links high-resolution field measurements of sea level and air pressure from Hurricane Harvey (2017) with a numerical model to assess the potential for meteotsunami generation by sudden changes in air pressure accompanying TCRs. Previous studies, through the use of idealized models, have suggested that wind is the dominant forcing mechanism for TCR-induced meteotsunami with negligible contributions from air pressure. Our model simulations show that large air pressure perturbations (∌1–3 mbar) can generate meteotsunamis that are similar in period (∌20 min) and amplitude (∌0.2 m) to surf zone observations. The measured air pressure disturbances were often short in wavelength, which necessitates a numerical model with high temporal and spatial resolution to simulate meteotsunami triggered by this mechanism. Sensitivity analysis indicates that air pressure forcing can produce meteotsunami with amplitudes O(0.5 m) and large spatial extents, but model results are sensitive to atmospheric factors, including model uncertainties (length, forward translation speed, and trajectory of the air pressure disturbance), as well as oceanographic factors (storm surge). The present study provides observational and numerical evidence that suggest that air pressure perturbations likely play a larger role in meteotsunami generation by TCRs than previously identified.</p
    corecore