5 research outputs found

    Utilització de compostos naturals per a la millora del benestar dels peixos

    Get PDF
    Un grup d'investigació de la UAB juntament amb la universitat tailandesa "Prince of Songkla University" han dut a terme un estudi per avaluar l'efecte d'una planta medicinal tailandesa (Rhodomyrtus turmentosa) sobre la truita arc de Sant Martí (Oncorhynchus mykiss) ja que és un del principals peixos de més consum humà. Han conclòs que aquesta planta exerceix efectes immunoestimulatoris, indueix gens implicats en la resposta immune innata i modula la resposta fisiològica a l'estrès. D'aquesta manera, s'obra la possibilitat d'utilitzar-la pel maneig de la salut en l'aqüicultura.Un grupo de investigación de la UAB junto con la universidad tailandesa "Prince of Songkla University" han llevado a cabo un estudio para evaluar el efecto de una planta medicinal tailandesa (Rhodomyrtus tormentosa) sobre la trucha arco iris (Oncorhynchus mykiss) ya que es uno de los principales peces de más consumo humano. Han concluido que esta planta ejerce efectos immunoestimulatorios, induce genes implicados en la respuesta inmune innata y modula la respuesta fisiológica al estrés. De este modo, se abriría la posibilidad de utilizarla para el manejo de la salud en la acuicultura

    Pilot study : duodenal MDR1 and COX2 gene expression in cats with inflammatory bowel disease and low-grade alimentary lymphoma

    Get PDF
    Altres ajuts: FCT/SFRH/BPD/109219/2015Multidrug resistance 1 (MDR1) encodes a protein called P-glycoprotein (P-gp), which serves as an efflux pump membrane protein implicated in intestinal homeostasis and drug resistance. Cyclooxygenase-2 (COX2) is a key enzyme in the synthesis of proinflammatory prostaglandins, tumourigenesis and in mucosal defence. Despite the importance of MDR1 and COX2, changes in their mRNA levels have not been studied in cats with inflammatory bowel disease (IBD) and low-grade alimentary lymphoma (LGAL). The present study aimed to determine the mRNA levels of MDR1 and COX2 in cats with IBD and LGAL, and to evaluate their correlation with clinical signs, histological severity and between genes

    Immunomodulatory effects of Rhodomyrtus tomentosa leaf extract and its derivative compound, rhodomyrtone, on head kidney macrophages of rainbow trout (Oncorhynchus mykiss)

    Get PDF
    Rhodomyrtus tomentosa is a medicinal plant that shows biological effects including immunomodulatory activity on human and other mammals but not in fish. In this study, we evaluated the in vitro immunomodulatory effects of R. tomentosa leaf extract and its active compound, rhodomyrtone, on the immune responses, using rainbow trout (Oncorhynchus mykiss) head kidney (HK) macrophages as a model. The tested immune functions included the expression of genes involved in innate immune and inflammatory responses and the production of reactive oxygen species (ROS). Gene expression was evaluated after exposure to 10 μg mL⁻¹ of R. tomentosa and 1 μg mL⁻¹ of rhodomyrtone for 4 and 24 h. R. tomentosa and rhodomyrtone induced changes in the expression of pro-inflammatory cytokines (il1β, il8, and tnfα), anti-inflammatory cytokines (il10 and tgfβ), inducible enzymes (inos, cox2, and arginase), and an antioxidant enzyme (gpx1). Co-exposure of R. tomentosa with LPS resulted in a prominent reduction in the expression of genes related to an inflammatory process (il1β, il8, tnfα, inos, saa, hepcidin, and gpx1), suggesting anti-inflammatory effects. Similarly, co-exposure of rhodomyrtone with LPS led to a downregulation of inflammation-related genes (il1β, inos, saa, and hepcidin). In addition, exposure to both natural plant products caused a reduction in cellular ROS levels by HK macrophages. The present results indicate that R. tomentosa and rhodomyrtone exerted immunostimulatory and anti-inflammatory effects on fish macrophages, thus opening up the possibility of using these natural products to further develop immunostimulants for health management in aquaculture

    Immunomodulatory effects of Rhodomyrtus tomentosa leaf extract and its derivative compound, rhodomyrtone, on head kidney macrophages of rainbow trout (Oncorhynchus mykiss)

    No full text
    Rhodomyrtus tomentosa is a medicinal plant that shows biological effects including immunomodulatory activity on human and other mammals but not in fish. In this study, we evaluated the in vitro immunomodulatory effects of R. tomentosa leaf extract and its active compound, rhodomyrtone, on the immune responses, using rainbow trout (Oncorhynchus mykiss) head kidney (HK) macrophages as a model. The tested immune functions included the expression of genes involved in innate immune and inflammatory responses and the production of reactive oxygen species (ROS). Gene expression was evaluated after exposure to 10 μg mL⁻¹ of R. tomentosa and 1 μg mL⁻¹ of rhodomyrtone for 4 and 24 h. R. tomentosa and rhodomyrtone induced changes in the expression of pro-inflammatory cytokines (il1β, il8, and tnfα), anti-inflammatory cytokines (il10 and tgfβ), inducible enzymes (inos, cox2, and arginase), and an antioxidant enzyme (gpx1). Co-exposure of R. tomentosa with LPS resulted in a prominent reduction in the expression of genes related to an inflammatory process (il1β, il8, tnfα, inos, saa, hepcidin, and gpx1), suggesting anti-inflammatory effects. Similarly, co-exposure of rhodomyrtone with LPS led to a downregulation of inflammation-related genes (il1β, inos, saa, and hepcidin). In addition, exposure to both natural plant products caused a reduction in cellular ROS levels by HK macrophages. The present results indicate that R. tomentosa and rhodomyrtone exerted immunostimulatory and anti-inflammatory effects on fish macrophages, thus opening up the possibility of using these natural products to further develop immunostimulants for health management in aquaculture

    Pilot study : duodenal MDR1 and COX2 gene expression in cats with inflammatory bowel disease and low-grade alimentary lymphoma

    No full text
    Multidrug resistance 1 (MDR1) encodes a protein called P-glycoprotein (P-gp), which serves as an efflux pump membrane protein implicated in intestinal homeostasis and drug resistance. Cyclooxygenase-2 (COX2) is a key enzyme in the synthesis of proinflammatory prostaglandins, tumourigenesis and in mucosal defence. Despite the importance of MDR1 and COX2, changes in their mRNA levels have not been studied in cats with inflammatory bowel disease (IBD) and low-grade alimentary lymphoma (LGAL). The present study aimed to determine the mRNA levels of MDR1 and COX2 in cats with IBD and LGAL, and to evaluate their correlation with clinical signs, histological severity and between genes
    corecore