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Abstract 

Rhodomyrtus tomentosa is a medicinal plant that shows biological effects including immunomodulatory activity 

on human and other mammals, but not in fish. In this study, we evaluated the in vitro immunomodulatory 

effects of Rhodomyrtus tomentosa leaf extract and its active compound, rhodomyrtone on the immune 

responses, using rainbow trout (Oncorhynchus mykiss) head kidney (HK) macrophages as a model. The tested 

immune functions included the expression of genes involved in innate immune and inflammatory responses and 

the production of reactive oxygen species (ROS). Gene expression was evaluated after exposure to 10 µg mL-1 

of R. tomentosa and 1 µg mL-1 of rhodomyrtone for 4 and 24 h. R. tomentosa and rhodomyrtone induced 

changes in the expression of pro-inflammatory cytokines (il1β, il8, and tnfα), anti-inflammatory cytokines (il10 

and tgfβ), inducible enzymes (inos, cox2, and arginase), and an antioxidant enzyme (gpx1). Co-exposure of R. 

tomentosa with LPS resulted in a prominent reduction in the expression of genes related to an inflammatory 

process (il1β, il8, tnfα, inos, saa, hepcidin, and gpx1), suggesting anti-inflammatory effects. Similarly, co-

exposure of rhodomyrtone with LPS led to a down-regulation of inflammation-related genes (il1β, inos, saa, and 

hepcidin). In addition, exposure to both natural plant products caused a reduction in cellular ROS levels by HK 

macrophages. The present results indicate that R. tomentosa and rhodomyrtone exerted immunostimulatory and 

anti-inflammatory effects on fish macrophages, thus opening up the possibility of using these natural products to 

further develop immunostimulants for health management in aquaculture. 

 

Keywords Immunomodulatory effects ∙ Macrophages ∙ Rhodomyrtus tomentosa ∙ rhodomyrtone ∙ Rainbow trout 
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Introduction 

 The use of medicinal plants as an alternative way for disease control and health improvement in aquatic 

organisms has gain interest, due to increasing concerns on the detrimental effects of antibiotics and chemicals in 

aquacultured species and the environment. Natural plant products show multiple biological activities, such as 

antibacterial activities, anti-stress and growth-promoting effects, some of which providing benefits for fish 

health management (Van Hai 2015). In addition, they may be readily available, inexpensive, and have no 

hazardous effects because of low side effects on aquatic animals and environment (Van Hai 2015). 

Immunomodulatory activity is one of the prevalent properties of medicinal plants that are being widely 

examined in competition with other immunostimulators like lipopolysaccharides (LPS), β-glucan, chitosan 

(Sakai 1999), and flagellin (Wangkahart et al. 2016). Previous studies conducted in both in vitro and in vivo 

conditions reported that medicinal plants have a positive impact on fish immune responses, which renders 

higher degree of disease resistance and stress tolerance (Chakraborty and Hancz 2011; Harikrishnan et al. 2011). 

Experiments on animal models have clearly defined the advantages of plant products as an alternative to the 

chemical control and treatment of diseases. Nevertheless, variations depending on physical characteristics of 

animals (e.g. species, size, and sex), environment conditions (e.g. temperature, salinity, and water quality), and 

occurrence of stressors (e.g. container and restriction effects, catching and capture) need to be assessed in these 

models. 

 The use of cell lines and primary cell cultures derived from fish organs has been extensively used as in 

vitro models for determining the toxicity of aquatic pollutants (Fent 2001; Wang et al. 2011), as well as for the 

study of the immunomodulatory effects of various chemical and biological compounds including natural 

products (Yin et al. 2011; Picchietti et al. 2013; Villasante et al. 2016). For instance, a Sparus aurata fibroblast 

cell line (SAF-1) has been used to determine the immunostimulatory effects of Aloe arborescens at molecular 

level, evaluating the expression of immune-related genes (Picchietti et al. 2013). Primary myogenic cell 

preparations of rainbow trout (Oncorhynchus mykiss) were used to investigate the effects of anthocyanidins, a 

flavonoid-polyphenol compound of several vegetables as a promoter of myogenic differentiation and 

antioxidant defense (Villasante et al. 2016). Recently, two stromal cell lines derived from spleen (TSS), 

pronephros (TPS-2) and macrophages of rainbow trout have been used as in vitro models for immunostimulant 

studies in aquaculture (Fierro-Castro et al. 2012; Fierro-Castro et al. 2013).  
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 Rhodomyrtus tomentosa (Aiton) Hassk, is a Thai medicinal plant of the family Myrtaceae that can be 

found in tropical areas of Southeast Asia and some regions of Australia. Its immunopharmacological and 

chemopreventive properties have been studied and it has been reported to be an antioxidant (Lavanya et al. 

2012), anti-inflammatory agent (Jeong et al. 2013) in mice models, while earlier in vitro studies reported a 

stimulatory activity of the plant extract on the differentiation of mouse osteoblastic cell lines (Tung et al. 2009). 

Rhodomyrtone, a pure compound of the acylphloroglucinol class isolated from R. tomentosa leaves, also 

promoted pro- and anti-inflammatory responses in human monocytes (Srisuwan et al. 2014). While this plant 

and its compounds have shown encouraging results in human and other mammals such as mouse (Lavanya et al. 

2012; Jeong et al. 2013) and cow (Mordmuang et al. 2015), its potential on aquatic animals has not yet been 

investigated. In this context, the aim of the present study was to determine the immunomodulatory effects of not 

only the medicinal plant, R. tomentosa but also its active compound, rhodomyrtone on macrophages isolated 

from rainbow trout head kidney (HK) through changes in the expression of target genes related to innate 

immune responses. The target genes were selected based on the ability of R. tomentosa leaf extract or its 

phytochemical components (e.g. rhodomyrtone, quercetin, ursolic acid, tomentosin etc.) to modulate mRNAs 

relevant to immune defenses in mammals, as documented in previous studies (Manu and Kuttan 2008; Jeong et 

al. 2013; Srisuwan et al. 2014). In this study our objective focused on selected indicators of the innate immune 

function of fish, since the innate immune system of fish responds earlier and non-specifically  to any challenge 

such as the exposure to these plant compounds. Moreover, since the adaptive response is more relevant at 

systemic level and longer exposure times, it would deserve another experimental approach. The selected genes 

included pro-inflammatory cytokines, such as interleukin 1β (il1β), interleukin 8 (il8) and tumour necrosis 

factor-α (tnfα); immune-suppressing cytokines, namely interleukin 10 (il10) and transforming growth factor beta 

(tgfβ); inducible enzymes, such as inducible nitric oxide synthase (inos), cyclooxygenase-2 (cox2) and arginase;  

antimicrobial peptides and acute phase proteins, such as serum amyloid A (saa) and hepcidin, as well as 

antioxidant enzymes, namely NADPH oxidase (nadph) and glutathione peroxidase 1 (gpx1). 

 

Materials and methods 

R. tomentosa leaf extract and rhodomyrtone preparation 

 R. tomentosa leaves were collected from Khuan Lang, Songkhla Province in the southern part of 

Thailand. The voucher specimen was identified and deposited at Faculty of Traditional Thai Medicine, Prince of 

Songkla University, Thailand. An ethanol extract of R. tomentosa leaves was prepared according to the method 
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of Limsuwan et al (2009). Rhodomyrtone was obtained from Natural Product Research Center of Excellence, 

Prince of Songkla University, Thailand. Rhodomyrtone was isolated from the leaves crude extracts of R. 

tomentosa using column chromatography (Hiranrat and Mahabusarakam 2008). A stock solution of R. 

tomentosa extract and rhodomyrtone was prepared by dissolving in 100% dimethyl sulphoxide (DMSO) and 

stored at ‒20 ºC until use. The stock plant solutions were diluted to appropriate final concentrations in cell 

culture medium. The final concentration of DMSO in the working solution was 0.4% which did not show any 

cytotoxic effect on fish macrophages. 

 

Fish 

 O. mykiss weighing 150‒200 g were obtained from a local fish farm, Trout Farm (Oliana, Spain). Fish 

were maintained in recirculating freshwater tanks, at 14 ºC, with a 12 h light per 12 h dark photoperiod. Fish 

were daily fed with a commercial diet (Trouw T6 Classics 3P, Trouw España, Spain). Dissolved oxygen (<9 mg 

L-1), pH (6.0 ‒ 8.5), nitrite (<0.05 mg L-1), nitrate (<1.0 mg L-1), and ammonia (<0.07 mg L-1) were monitored 

along the whole experiment. Prior to experiments, fish were acclimatized to these conditions for 2 weeks, and 

observed during this period for any abnormal clinical sign. All experimental procedures involving fish were 

submitted and authorized by the Ethical Committee of the “Universitat Autònoma de Barcelona” that agrees 

with the International Guiding Principles for Biomedical Research Involving Animals (EU 2010/63). 

 

Macrophage isolation and culture conditions 

 Fish were sacrificed by over-anesthetization with tricaine methane sulphonate (MS222, Sigma-

Aldrich). Blood was removed from the caudal vein and HK were excised. HK macrophages were obtained 

according to the method described by Secombes (1990). Briefly, HK tissue was harvested aseptically and 

pushed through a nylon mesh (100 µm) with 5 ml of RPMI medium (Gibco) containing 2% fetal bovine serum 

(FBS), 50 mg mL-1 gentamicin, 2 mg mL-1 amphotericin B, and 20 units mL-1 heparin. HK macrophages were 

isolated by centrifugation of the cell suspensions on a 34/51% discontinuous Percoll gradient (400 g for 30 min 

at 4 ºC). The cells banding in the Percoll interface were collected, washed, and adjusted the cell suspension to 2 

× 107 viable cells mL-1 with RPMI medium containing 0.1% FCS, 50 mg mL-1 gentamicin, and 2 mg mL-1 

amphotericin B. The resultant cell suspension was seeded in 96-well plate for the cytotoxicity and respiratory 

burst tests and on 6-well plate for the gene expression study and incubated overnight at 18 ºC in air containing 

5% CO2. Purified plastic-adherent cells were cultured in fresh RPMI 1640 medium containing 5% FBS, 50 mg 
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mL-1 gentamicin, and 2 mg mL-1 amphotericin B for 24 h before use. For the cytotoxicity and respiratory burst 

activity assays six fish were used (n=6) and for gene expression analysis three fish were used (n=3). 

 

Cytotoxicity assay 

 Evaluation of cytotoxic activity of R. tomentosa and rhodomyrtone in fish cells was determined by 

MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) reduction assay (Sigma-Aldrich). The 

MTT assay is based on the cellular uptake of MTT and its subsequent reduction in the mitochondria of living 

cells to MTT formazan. Dead cells do not cause this change. Fish cells (2 × 107 cells per well) were seeded in 

96-well tissue culture microtiter plates and allowed to adhere for 24 h under the cell culture conditions as 

described above. Subsequently, adherent cells were exposed to serial concentrations of R. tomentosa (2.5‒400 

µg mL-1) or rhodomyrtone (0.125‒16 µg mL-1), and its solvent (0.4% DMSO) and cultured for another 24 h. 

After incubation, the cells were gently washed with phosphate buffer solution (PBS) and new PBS was replaced 

into each well. Cell viability was assayed by adding 10 µL of MTT (5 mg mL-1 in PBS) and incubated in the 

dark at 18 ºC for 2 h. Thereafter, supernatant containing MTT was discarded and 100 µL of 100% DMSO were 

added to solubilize the intracellular formazan crystals. After thorough mixing, the absorbance was recorded at 

570 nm using a microplate reader (PerkinElmer, Victor3). Control wells had the same volume of medium 

without the plant substances.  All the experiments were run in triplicate wells for each condition (3 fish per 

experiment), and independently repeated at least three times.   

 Percent viability was defined at the ratio of absorbance between the test samples and the positive 

control using the formula:  

% viability = (Abssample/Abscontrol) × 100 

 

Treatment of macrophages with R. tomentosa leaf extract and rhodomyrtone 

 Two experiments were done; in the first experiment HK macrophages (2 × 107 cells per well) were 

exposed to R. tomentosa (10 µg mL-1) or rhodomyrtone (1 µg mL-1) and sampled after 4 and 24 hours of 

exposure. These concentrations were chosen regarding the cytotoxicity results. To gain insight into the 

immunomodulatory effects of the natural plant products in relation with pathogens, a second experiment was 

carried out in HK macrophages exposed to R. tomentosa plus LPS or rhodomyrtone plus LPS for 4 and 24 h. 

The concentration of LPS (5 µg mL-1) from Salmonella typhimurium (Sigma-Aldrich) was chosen based on 

previous studies showing that this concentration generates an inflammatory response in HK macrophages 
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(Fierro-Castro et al. 2012; Fierro-Castro et al. 2013). R. tomentosa and rhodomyrtone concentrations were 

chosen based on the results of experiment 1.  Unexposed cells were used as control groups. The assays were set 

up for use in gene transcription analysis as described below. The experiments were carried out in triplicate wells 

(3 fish per experiment), and independently repeated three times. 

 

Gene transcription analysis 

 Total RNA from HK macrophages was extracted using TRI reagent (Sigma-Aldrich) following the 

manufacturer's instructions. Purity and concentration of total RNA were measured spectrophotometrically using 

a NanoDrop Reader (Thermo Fisher Scientific, USA). The verification of RNA integrity was assessed by 

running an aliquot of the sample pre-strained with bromophenol blue on a 1% agarose gel. One microgram of 

RNA was used as a template for cDNA systhesis, using iScriptTM cDNA Synthesis Kit (Bio-Rad, USA). The 

resultant cDNA was stored at ‒20 ºC until use. The GenBank identification and primer sequences are shown in 

Table 1. 

 PCR amplification was assayed with the SYBR green method using a iQ5 iCycler thermal cycler (Bio-

Rad). The reactions were set up in a 384-well plate according to manufacturer’s procedures consisting of 1 µL 

of cDNA template (1:10 dilution), 5 µL of iTaqTM Universal SYBR Green Supermix (Bio-Rad), 3.6 μl of Milli-

Q water, and 0.2 µL of forward and reverse primer (0.1 mM). PCR cycling conditions were 95 ºC for 10 s 

followed by 60 ºC for 30 s with an initial denaturation step of 95 ºC for 3 min. Fluorescence signal output was 

monitored at the end of each cycle for 40 cycles. All amplification reactions were run in triplicate for each 

sample. The relative expression ratios of target gene were calculated using the comparative threshold cycle (Ct) 

method (Pfaffl 2001). PCR amplification efficiencies (E) for each primer pair were assessed using a five-fold 

dilution series of pool cDNA. The efficiency was analyzed following the equation: E = 10[-1/s], where s is the 

slope generated from the serial dilutions of target nucleic acid, when Log dilution is plotted against Ct values. 

The expression of target genes was normalized against a reference gene (ef1α) following the equation: 

Ratio = (Etarget)ΔCt
target

(control-sample)/ (Eref)ΔCt
ref

(control-sample) 

 where Etarget is E of the target gene transcript, Eref is E of a reference gene transcript, ΔCttarget is crossing 

point (CP) deviation of control-sample of target gene transcript, and ΔCtref is CP deviation of control-sample of 

reference gene transcript. 

 

Reactive oxygen species (ROS) production 
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Intracellular ROS production of the fish cells exposed to the plant products was investigated by 

nitroblue tetrazolium (NBT) reduction assay (Chung and Secombes 1988). In brief, cell monolayers were 

washed twice with HBSS and 100 µL of R. tomentosa; (10, 50, and 100 µg mL-1) or rhodomyrtone (1, 2, and 4 

µg mL-1) dissolved in RPMI medium plus 1 mg mL-1 of NBT was added and incubated in the dark at 18 ºC 

under 5% CO2 for 1 h. Thereafter, the supernatant was removed and the cellular pellet was fixed in methanol 

(Merck) for 15 min and then washed with 70% methanol. After fixation, the resultant formazan product was 

solubilized in 120 µL of 2 M KOH and 140 µL of DMSO with thorough mixing. The experiments were repeated 

two times and the results in each test were based on the mean of three fish per replicate. The absorbance for 

each sample solution was measured at 620 nm using a microplate reader. The index of exposed cells was 

calculated using the formula:  

ROS production (%) = [(sample-blank)/(control-blank)]-1 × 100  

 

Statistical analyses  

 Statistical analyses were performed using SPSS statistical software version 16 (SPSS Inc, IBM, 

Chicago, USA). Toxicity data was analyzed by one-way ANOVA using Tukey’s test for multiple comparisons. 

For all the other parameters a two-way ANOVA was done considering, as main factors treatment and time.  

Statistical significance was assumed when P < 0.01 or P < 0.05. 

 

Results 

Cytotoxicity of R. tomentosa leaf extract and rhodomyrtone on HK macrophages 

 The results demonstrated that R. tomentosa and rhodomyrtone did not show any significant cytotoxic 

effect against HK macrophages at concentrations lower than 25 and 1 µg mL-1, respectively (P < 0.05) (Fig. 1). 

Meanwhile, R. tomentosa at 50 µg mL-1 and rhodomyrtone at 2 µg mL-1 were slightly toxic (cell viability < 

80%) even though there was not statistically significant difference in cell viability between control and treated 

groups. The plant products exhibited cytotoxicity at higher concentrations in a concentration-dependent manner.  

 

Effects of R. tomentosa leaf extract and rhodomyrtone on the expression of immune-related genes 

 In this study, the variation of immune-related genes was determined in HK macrophages after exposure 

to 10 µg mL-1 of R. tomentosa and 1 µg mL-1 of rhodomyrtone for 4 and 24 h. Regarding pro-inflammatory 

cytokines (il1β, il8, and tnfα) gene expression, the HK macrophages exposed to R. tomentosa for 4 h presented 
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significant upregulation of il1β (Fig.2) (P < 0.01). Meanwhile, exposure to rhodomyrtone for 4 h caused a 

significant upregulation of il1β, il8, and tnfα (P < 0.01).   

 The expression of immune-suppressing cytokines, il10 and tgfβ in HK macrophages was not modified 

when exposed to R. tomentosa for 4 and 24 in comparison with the control group (Fig. 3). Of the parallel 

analysis, the mRNA level of these anti-inflammatory cytokines was not significantly changed after exposure to 

rhodomyrtone for 4 h as seen in R. tomentosa treated groups. However, after 24 h, increased expression of both 

il10 and tgfβ was detected in the fish cells (P < 0.05). 

 With respect to immune genes related to inducible enzymes, inos, cox2, and arginase, exposure of HK 

macrophages to R. tomentosa for 4 and 24 h had no significant effect on the alteration of these genes (Fig. 4). 

Treatment of fish cells with rhodomyrtone for 4 h did not modify the expression of inos, cox2, and arginase 

expression, whilst treatment with the compound for 24 h resulted in significant upregulation of all the genes (P 

< 0.01). 

 In terms of genes influencing acute phase protein (saa), antimicrobial peptide (hepcidin), and 

antioxidant enzymes (nadph and gpx1), R. tomentosa failed to alter the expression of the target genes in HK 

macrophages after 4 and 24 h exposure (Fig. 5). On the other hand, the transcription of those genes was also 

unaffected by exposure to rhodomyrtone for 4 and 24 h with the exception of gpx1. The expression of gpx1 was 

remarkably upregulated in response to rhodomyrtone after 24 h exposure (P < 0.01).  

 To gain insight into the immunomodulatory effects of the natural plant products in relation with 

pathogen contamination in aquatic ecosystems, the gene expression associated with innate immune response in 

HK macrophages exposed to a combination of R. tomentosa or rhodomyrtone and LPS was investigated. The 

results demonstrated that exposure to R. tomentosa plus LPS caused a significant decrease in the expression of 

il1β, il8, inos, and hepcidin after 4 h (P < 0.01), and then 24 h exposure led to a reduction in the expression of 

il1β, il8, saa, and gpx1, compared with LPS alone (P < 0.01) (Fig. 6). The combined treatment with 

rhodomyrtone and LPS led to a significant reduction in the expression of il1β, inos, and hepcidin after 4 h 

exposure and the expression of saa, hepcidin, and gpx1 after 24 h exposure (P < 0.01), but resulted in a 

synergistic upregulation of tnfα after 4 and 24 h exposure in comparison with LPS alone (P > 0.05).  

 

Effects of R. tomentosa leaf extract and rhodomrytone on ROS production 

 Concerning intracellular ROS production (superoxide anion), after exposure to R. tomentosa (10, 50, 

100 µg mL-1) and rhodomyrtone (1, 2, and 4 µg mL-1) for 1 h, both plant products inhibited NBT reduction in 
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the HK macrophages, thus showing a significant decrease in absorbance with increasing concentrations when 

compared with the control (0.4% DMSO) (P < 0.05) (Fig. 7). Likewise, the addition of the antioxidant enzyme 

superoxide dismutase (SOD) (300 U mL-1), to HK macrophages showed a significant decrease in NBT reduction 

rate (P < 0.05). 
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Discussion 

 Currently, there has been growing interest in medicinal plants and phytochemical compounds derived 

from plants as enhancers of the fish immune response against fish pathogens in aquaculture as an alternative to 

chemicals (Dügenci et al. 2003; Galina et al. 2009; Vaseeharan and Thaya 2014). The understanding of the 

mechanims behind the effects of medicinal plants on fish immune response at molecular level are indoubtably 

helpful for proposing appropriate applications in fish farming. In this work, the immunomodulatory potential of 

both natural plant products, the ethanol extract of R. tomentosa ant its active compound, rhodomyrtone was 

determined focusing on the mRNA levels of innate immune-related genes in macrophages of rainbow trout and 

on the functional response of ROS production. 

 Initially, the cytotoxicity of R. tomentosa and rhodomyrtone was preliminary tested on the HK 

macrophages within a concentration range based on their cytotoxicity on mammalian monocytes/macrophages 

(Jeong et al. 2013; Srisuwan et al. 2014).  The results revealed that doses of R. tomentosa that have no cytotoxic 

effects on HK macrophages were lower than 25 µg mL-1 in which the solvent (0.4% DMSO) showed absence of 

cytotoxicity. Previously, Jeong et al (2013) reported no cytotoxic effects of R. tomentosa methanol extract on a 

murine macrophage cell line (RAW264.7 cells) at 2-fold to 16-fold higher than in the present study. 

Rhodomyrtone did not show any cytotoxic effect on the fish HK macrophages at concentrations less than 1 µg 

mL-1, as opposed to a study demonstrating rhodomyrtone toxicity (1.56 µg mL-1) on human monocytes (THP-1) 

(Srisuwan et al. 2014).  

 Exposition of HK macrophages to R. tomentosa resulted in a noticeable upregulation of pro-

inflammatory cytokine, ilβ gene expression after 4 h, while the fish cells exposed to rhodomyrtone showed an 

increase in the mRNA levels of ilβ, il8, and tnfα genes. In fish, pro-inflammatory cytokines such as IL1β, IL8, 

and TNFα are key players in immune response, stimulating macrophage activation and enhancing the synthesis 

of inflammatory proteins responsible for antimicrobial defenses and inflammatory reaction (Secombes et al. 

2001). Thus, the specific enhancement of the gene expression by the plant substances might promote the activity 

of the fish macrophages leading to early protective immunity during diseases. In line with our study, Chi et al 

(2016) observed an upregulation of il1β and tnfα mRNA levels in HK macrophages of grass carp 

(Ctenopharyngodon idella) after exposure to a phytochemical compound extracted from Dryopteris 

crassirhizoma. Furthermore, in vivo administration of Ficus carica polysaccharide induced an increase in the 

mRNA levels of il1β and tnfα, thereby providing resistance to Flavobacterium columnare infection in grass carp 
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(Yang et al. 2015). Reyes-Becerril et al (2013) observed modulatory effects on il1β and il8 gene expression of 

gilthead sea bream (Sparus aurata) after diet supplementation with lyophilized microalgae Navicula sp. Besides, 

studies with mammalian cells have shown that natural compounds such as anethol, capsicum oleoresin, 

carvacrol, eugenol, garlicon, and cinnamaldehyde augmented IL1β and TNFα protein secretion of weaned pig 

macrophages (Liu et al. 2012), possibly indicating a stimulatory effect of the phytochemical compounds on pro-

inflammatory cytokine gene expression in immune cells.  

IL10 and TGFβ are immunosuppressive cytokines responsible for anti-inflammatory reactions thus 

restricting the inflammatory response to minimize host damage (Zou and Secombes 2016). In the present study, 

either il10 or tgfβ were unaltered in HK macrophages exposure to R. tomentosa. On the other hand, il10 or tgfβ 

mRNA transcriptional levels were obviously increased following rhodomyrtone exposure for 24 h. The presence 

of anti-inflammatory cytokines served as an important negative feedback mechanism to control the expression 

of pro-inflammatory cytokines, thus balancing stimulatory and inhibitory protein signaling pathways involved in 

immune responses. Other authors have reported that a recombinant form of IL10 (rgIL10) attenuated the mRNA 

expression of tnfα1, tnfα2, il1β1, cxcl8, and nadph oxidase component in heat-killed Aeromonas salmonicida 

activated-monocytes of goldfish (Carassius auratus) (Grayfer et al. 2011). Likewise, the inhibitory effects of a 

recombinant TGFβ1 on the expression of tnfα, il1β, il8, and inos via NF-kB signaling by blocking IκBα 

(gcIκBα; IκB inhibitor) protein secretion in LPS-stimulated macrophages of grass carp have been reported (Wei 

et al. 2015). Therefore, in the present study, rhodomyrtone might have positive effects on fish immune response 

to maintain balance and prevent injuries caused by the over expression of pro-inflammatory cytokines. 

 To further address the immunomodulatory effects of R. tomentosa and rhodomyrtone on innate 

immune defense, we examined the expression patterns of genes involved in inducible enzymes (inos, cox2, and 

arginase), saa, hepcidin, and antioxidant enzymes (nadph and gpx1) of rainbow trout HK macrophages. In the 

present study we observed that R. tomentosa had no effect on mRNA abundance of all inducible enzymes and 

antioxidant enzymes, whereas rhodomyrtone obviously upregulated the expression of inos, cox2, and arginase 

including gpx1 gene in the fish cells after 24 h exposure. This data supports the findings on THP-1 human 

macrophages exposed to rhodomyrtone, which have shown the potential of this compound to induce nitric oxide 

production through enhanced expression of the inos gene (Srisuwan et al. 2014). In addition, the 

immunomodulatory effects of ginsan (Panax ginseng) by increasing inos mRNA level and other major pro-

inflammatory cytokines (e.g. il1β, il6, and tnfα) in comparison with LPS/IFNγ stimulation in murine peritoneal 

macrophages have been reported (Song et al. 2002). In animal models, ginger (Zingiber officinale) has been 
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found to possess an antioxidant protective efficacy for chemoprevention of liver diseases by enhancing mRNA 

expression of antioxidant genes such as gpx1, gstα1 (glutathione S transferase α1), and cat (catalase) in rats 

(Mohamed et al. 2015). 

 We found that after co-exposition of HK macrophages to R. tomentosa and LPS, mRNA levels of il1β, 

il8, inos, tnfα, saa, hepcidin, and gpx1 were dramatically down-regulated, pointing out the anti-inflammatory 

properties of this plant on the fish immune cells. Previous studies with mammalian cells indicated that pro-

inflammatory cytokine production such as IL1β, IL6, and TNFα can be inhibited by quercetin, a flavonoid found 

in many plants when co-exposed to immunostimulators (e.g. LPS, phorbol 12-myristate 13- acetate) (Cho et al. 

2003; Nair et al. 2006). Quercetin acts as an anti-oxidant and anti-inflammatory agent by reducing the 

phosphorylation and activation of ERK and p38 MAP kinases and inhibiting NF-κB system through the IκB 

kinase complex, thus blocking pro-inflammatory cytokines and inos expression (Cho et al. 2003). Intriguingly, 

this compound has also been detected in the methanol extract of R. tomentosa (Jeong et al. 2013). Analogous 

results observed in murine macrophages exposed to R. tomentosa demonstrated that the plant extract suppressed 

the activation of NF-κB pathway via Syk/Src and AP-1 pathway via IRAK1/IRAK4 signaling, responsible for 

nitric oxide and prostaglandin E2 productions (Jeong et al. 2013).  

In co-exposition to rhodomyrtone and LPS, the plant compound noticeably induced pro-inflammatory 

gene expression, tnfα in HK macrophages, indicating a synergistic effect between both stimuli, while the mRNA 

levels of other pro-inflammatory and immune-related genes including il1β, inos, saa, hepcidin, and gpx1 were 

down regulated. Conversely, in human macrophages, rhodomyrtone did not show any stimulatory effects on il1β 

and tnfα expression, but this compound synergistically enhanced other pro-inflammatory mediators such as il6 

and inos in THP-1 human monocytes exposed to heat-killed multidrug-resistant Staphylococcus aureus 

(Srisuwan et al. 2014). These contradictory results might be attributed to species differences, co-stimulating 

sources, and sampling times. In other fish cells, elevated gene expression of tnfα with other pro-inflammatory 

mediators (e.g. il1β, cox2) was found in LPS-activated sea bream fibroblasts during co-incubation with Aloe 

arborescens leaf extract (Picchietti et al. 2013). 

In line with our findings in other animals, oleifolioside A, a triterpenoid compound from Dendropanax 

morbifera was found to attenuate the expression of inos and cox2 gene in LPS-activated murine macrophage 

(Yu et al. 2012). Other authors have reported the anti-inflammatory effects of a flavonoid antioxidant silymarin, 

which depressed the level of inos gene transcription and its protein expression in LPS-induced murine 

macrophages (Kang et al. 2002). The extracts of Echinacea pallida (Zhai et al. 2009), Grindelia robusta, Salix 
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nigra, Arnica montana, and Quassia amara (Verma et al. 2010) suppressed the production of iNOS and COX2 

protein in LPS-stimulated macrophages. Recently, an in vivo study revealed that feeding rats with Cichorium 

intybus root extract caused increase in oxidative stress and hepatotoxicity resulting in suppression of the 

antioxidant gene transcripts, gpx1, cat, and pon1 (El-Sayed et al. 2015). There was no information about the 

effect of natural products on saa gene transcription, but a reduction in SAA protein in activated-mouse liver 

cells by colchicine, a secondary metabolite originally isolated from plants of genus Colchicum, has been 

reported (Tatsuta et al. 1984). 

Our results suggest that R. tomentosa and rhodomyrtone can inhibit the production of superoxide anion 

in HK macrophages of rainbow trout. Respiratory burst is a vital mechanism of innate immune defense that 

occurs in phagocytes, in particular neutrophils and macrophages (Neumann et al. 2001). Superoxide anion is one 

of the reactive respiratory burst activation byproducts that exert antimicrobial actions against invading 

pathogens and also play a cytotoxic role in the development of inflammatory response. Superoxide dismutase is 

an antioxidant enzyme that removes superoxide anion. In this study, it was expected that both R. tomentosa and 

rhodomyrtone would induce SOD production by regulating the expression of sod gene in the fish cells. This 

might be a protective mechanism to avoid cell damage caused by oxidative stress during upregulation of 

cytokines and other immune mediators involved in inflammatory response under immunostimulation with the 

plant substances. A previous study has reported protection against ischemia in rats by upregulation of gene 

expression of antioxidant enzymes (cat, gpx, and sod), while increaseasing pro-inflammatory cytokine genes 

(il1β, il6, and tnfα) during myocardial ischemia/reperfusion process in animal models (Chandrasekar et al. 

1997). Similar results were observed in mouse peritoneal macrophages following intraperitoneal administration 

of Hippophae salicifolia bark extract (Chakraborty et al. 2016). This plant extract also prevents oxidative DNA 

damage, lipid peroxidation, and reduces glutathione in the mouse macrophages. 

 

Conclusions 

 The present results show, for the first time in fish, the intrinsic immunomodulatory effects of the 

natural plant products, R. tomentosa and rhodomyrtone on the expression of genes related to innate immune 

response in rainbow trout HK macrophages by inducing the mRNA levels of certain pro-inflammatory 

cytokines, anti-inflammatory cytokines, inducible enzymes, and antioxidant enzymes. In LPS-triggered HK 

macrophages, R. tomentosa and rhodomyrtone possessed an anti-inflammatory effect by acting as an inhibitor of 

the gene expression of pro-inflammatory cytokines, acute phase proteins, and oxidant enzymes. In addition, both 
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plant substances significantly decreased the production of ROS in the fish cells.  According to their pronounced 

effects, this study expands the information on the phyto-immunomodulatory effects of specific plant products as 

possible enhancers of fish immunity, being valuable useful scientific data and a potential tool for further 

utilization in aquaculture.
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Table 1 Primers used for mRNA analysis by real-time PCR  

Gene name  Acronym GenBank  

accession 

Forward Reverse 

 

Interleukin 1β il1β AJ223954 GGATTCACAAGAACTAAGGAC ACTGTGATGTACTGCTGAAC 

Interleukin 8 il8 AJ279069 GAATGTCAGCCAGCCTTGTC TCCAGACAAATCTCCTGACCG 

Tumor necrosis factor-α tnfα AJ277604 AGCATGGAAGACCGTCAACGAT ACCCTCTAAATGGATGGCTGCTT 

Interleukin 10 il10 AB118099 CGACTTTAAATCTCCCATCGAC GCATTGGACGATCTCTTTCTT 

Transforming growth factor 

beta 

tgfβ OMY7836 CTCACATTTTACTGATGTCACTTCCTGT GGACAACTGCTCCACCTTGTG 

Inducible nitric oxide synthase inos AJ295231 CCAACCATGCACATCAAAAGTT CCTGAGGTAGGATTTCAAGAGTAGAAA 

Cyclooxygenase 2 cox2 AJ238307 ATCCTTACTCACTACAAAGG GCTGGTCCTTTCATGAAGTCTG 

Arginase arginase AY056477 TGGGAGCCGGACACACTAC GCCTTCCACTGAACCAATGG 

Serum amyloid A saa AM422447 GGTGAAGCTGCTCAAGGTGCTAAAG GCCATTACTGATGACTGTTGCTGC 

Hepcidin hepcidin CA369786 GCTGTTCCTTTCTCCGAGGTGC GTGACAGCAGTTGCAGCACCA 

Nicotinamide adenine 

dinucleotide phosphate oxidase 

nadph AB192465.1 CATCGCCCACCTGTTTAACT GTATGACCTGCGGATGACCT 

Glutathione peroxidase 1 gpx1 BG934453 GATTCGTTCCAAACTTCCTGCTA GCTCCCAGAACAGCCTGTTG 

Elongation factor-1α ef1α AF498320 CAAGGATATCCGTCGTGGCA ACAGCGAAACGACCAAGAGG 
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Figure legends 

Fig. 1 Cytotoxicity of Rhodomyrtus tomentosa leaf extract (RT) and rhodomyrtone (RD) on rainbow trout head 

kidney macrophages. Control cells were exposed to medium containing 0.4% DMSO. Results were expressed as 

mean values of triplicate independent experiments ± SD (n = 3 biological replicates). Single asterisks indicate 

significant differences from 0.4% DMSO (Control) at P < 0.05 (*), P < 0.01 (**). There were no significant 

difference between non treatment (100% viability) and DMSO treatment 

 

Fig. 2 Relative mRNA expression levels of interleukin 1β (il1β), interleukin 8 (il8), and tumour necrosis factor-

α (tnfα) in rainbow trout head kidney (HK) macrophages exposed to Rhodomyrtus tomentosa leaf extract (RT; 

10 µg mL-1) and rhodomyrtone (RD; 1 µg mL-1) alone or combined with LPS (5 µg mL-1) for 4 and 24 h. Bars 

represent the mean ± SD of relative mRNA expression as a fold change relative to elongation factor 1α (ef1α) (n 

= 3 biological replicates). Significant differences are: * vs. control (*P < 0.05, **P < 0.01), ▲ vs. difference 

between 4 and 24 h (▲P < 0.05, ▲▲P < 0.01)  

 

Fig. 3 Relative mRNA expression quantities interleukin 10 (il10) and transforming growth factor beta (tgfβ) in 

rainbow trout head kidney (HK) macrophages exposed to Rhodomyrtus tomentosa leaf extract (RT; 10 µg mL-1) 

and rhodomyrtone (RD; 1 µg mL-1) alone or combined with LPS (5 µg mL-1) for 4 and 24 h. Bars represent the 

mean ± SD of relative mRNA expression as a fold change relative to elongation factor 1α (ef1α) (n = 3 

biological replicates). Significant differences are: * vs. control (*P < 0.05, **P < 0.01), ▲ vs. difference 

between 4 and 24 h (▲P < 0.05, ▲▲P < 0.01) 

 

Fig. 4 Relative mRNA expression quantities of nitric oxide synthase (inos), cyclooxygenase-2 (cox2) and 

arginase in rainbow trout head kidney (HK) macrophages exposed to Rhodomyrtus tomentosa (RT; 10 µg mL-1) 

and rhodomyrtone (RD; 1 µg mL-1) alone or combined with LPS (5 µg mL-1) for 4 and 24 h. Bars represent the 

mean ± SD of relative mRNA expression as a fold change relative to elongation factor 1α (ef1α) (n = 3 

biological replicates). Significant differences are: * vs. control (*P < 0.05, **P < 0.01), ▲ vs. difference 

between 4 and 24 h (▲P < 0.05, ▲▲P < 0.01) 

 

Fig. 5 Relative mRNA expression quantities of serum amyloid A (saa), hepcidin, NADPH oxidase (nadph), and 

glutathione peroxidase 1 (gpx1) in rainbow trout head kidney (HK) macrophages exposed to Rhodomyrtus 
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tomentosa leaf extract (RT; 10 µg mL-1) and rhodomyrtone (RD; 1 µg mL-1) alone or combined with LPS (5 µg 

mL-1) for 4 and 24 h. Bars represent the mean ± SD of relative mRNA expression as a fold change relative to 

elongation factor 1α (ef1α) (n = 3 biological replicates). Significant differences are: * vs. control (0.4% DMSO) 

(*P < 0.05, **P < 0.01), ▲ vs. difference between 4 and 24 h (▲P < 0.05, ▲▲P < 0.01) 

 

Fig. 6 Relative mRNA expression quantities of interleukin 1β (il1β), interleukin 8 (il8), tumour necrosis factor-α 

(tnfα), interleukin 10 (il10) , transforming growth factor beta (tgfβ), inducible nitric oxide synthase (inos), 

cyclooxygenase-2 (cox2), arginase, serum amyloid A (saa), hepcidin, NADPH oxidase (nadph), and glutathione 

peroxidase 1 (gpx1) in rainbow trout head kidney (HK) macrophages exposed to Rhodomyrtus tomentosa leaf 

extract (RT; 10 µg mL-1) and rhodomyrtone (RD; 1 µg mL-1) alone or combined with LPS (5 µg mL-1) for 4 and 

24 h. Bars represent the mean ± SD of relative mRNA expression as a fold change relative to elongation factor 

1α (ef1α) (n = 3 biological replicates). Significant difference are * vs. control (*P < 0.05, **P < 0.01), ▲ vs. 

LPS (▲P < 0.05, ▲▲P < 0.01)  

 

Fig. 7 Percent of NBT reduction in rainbow trout HK macrophages after exposed to R. tomentosa leaf extract 

(RT; 10, 50, and 100 µg mL-1) and rhodomyrtone (RD; 1, 2, and 4 µg mL-1) for 1 h. Results were expressed as 

mean values of duplicate independent experiments ± SD (n = 3 biological replicates). The cells treated with 

SOD (300 U mL-1) were used as a positive control. Single asterisks indicate significant differences from 0.4% 

DMSO (Control) at P < 0.05 (*), P < 0.01 (**). There were no significant difference between non treatment 

(100% NBT reduction) and DMSO treatment 
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Fig. 3 
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Fig. 4 
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Fig. 5 
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Fig. 6 
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Fig. 7 

 

 

 

 

 

 

 

 

 


