163 research outputs found

    Restaurant outbreak of Legionnaires' disease associated with a decorative fountain: an environmental and case-control study

    Get PDF
    BACKGROUND: From June to November 2005, 18 cases of community-acquired Legionnaires' disease (LD) were reported in Rapid City South Dakota. We conducted epidemiologic and environmental investigations to identify the source of the outbreak. METHODS: We conducted a case-control study that included the first 13 cases and 52 controls randomly selected from emergency department records and matched on underlying illness. We collected information about activities of case-patients and controls during the 14 days before symptom onset. Environmental samples (n = 291) were cultured for Legionella. Clinical and environmental isolates were compared using monoclonal antibody subtyping and sequence based typing (SBT). RESULTS: Case-patients were significantly more likely than controls to have passed through several city areas that contained or were adjacent to areas with cooling towers positive for Legionella. Six of 11 case-patients (matched odds ratio (mOR) 32.7, 95% CI 4.7-infinity) reported eating in Restaurant A versus 0 controls. Legionella pneumophila serogroup 1 was isolated from four clinical specimens: 3 were Benidorm type strains and 1 was a Denver type strain. Legionella were identified from several environmental sites including 24 (56%) of 43 cooling towers tested, but only one site, a small decorative fountain in Restaurant A, contained Benidorm, the outbreak strain. Clinical and environmental Benidorm isolates had identical SBT patterns. CONCLUSION: This is the first time that small fountain without obvious aerosol-generating capability has been implicated as the source of a LD outbreak. Removal of the fountain halted transmission

    Reproduction in Heteroteuthis dispar (Rüppell, 1844) (Mollusca: Cephalopoda): a sepiolid reproductive adaptation to an oceanic lifestyle

    Get PDF
    Small cephalopods of the genus Heteroteuthis are the most pelagic members in the family Sepiolidae. This study examines the reproductive biology of Heteroteuthis dispar (Rüppell, 1844), the first such study on any member of the genus, based on 46 specimens (27 females and 19 males) collected during the Mar-Eco cruise in the North Atlantic in the region of the Mid-Atlantic Ridge in 2004, and compares it with reproductive features in the less pelagic members of the family. The unusually large spermatophores of the males have a very small ejaculatory apparatus and cement body, relative to the size of the sperm mass. Females first mate when they are still maturing: a large sperm mass (up to 3.4% of the female body mass), consisting of one to several spermatangia, was found in an internal seminal receptacle of the majority of the females examined regardless of their maturity state. The seminal receptacle has a unique form and position in this species. The receptacle is a thin-walled sac at the posterior end of the visceral mass that is an outpocketing of, and opens into, the visceropericardial coelom. Spermatangia and sperm from the spermatangia apparently enter into the visceropericardial coelom (which is mostly occupied by the ovary) from the seminal receptacle indicating that ova are fertilised internally, a strategy unknown for decapodiform cephalopods (squid and cuttlefish), but present in most octopods. Fecundity of Heteroteuthis dispar (1,100–1,300 oocytes) is much higher than in other sepiolids whereas the egg size (mean max. length ∼1.6 mm) is the smallest within the family. Spawning is continuous (sensu Rocha et al. in Biol Rev 76:291–304, 2001). These and other reproductive traits are discussed as being adaptations to an oceanic lifestyle

    First observations of separated atmospheric nu_mu and bar{nu-mu} events in the MINOS detector

    Get PDF
    The complete 5.4 kton MINOS far detector has been taking data since the beginning of August 2003 at a depth of 2070 meters water-equivalent in the Soudan mine, Minnesota. This paper presents the first MINOS observations of nuµ and [overline nu ]µ charged-current atmospheric neutrino interactions based on an exposure of 418 days. The ratio of upward- to downward-going events in the data is compared to the Monte Carlo expectation in the absence of neutrino oscillations, giving Rup/downdata/Rup/downMC=0.62-0.14+0.19(stat.)±0.02(sys.). An extended maximum likelihood analysis of the observed L/E distributions excludes the null hypothesis of no neutrino oscillations at the 98% confidence level. Using the curvature of the observed muons in the 1.3 T MINOS magnetic field nuµ and [overline nu ]µ interactions are separated. The ratio of [overline nu ]µ to nuµ events in the data is compared to the Monte Carlo expectation assuming neutrinos and antineutrinos oscillate in the same manner, giving R[overline nu ][sub mu]/nu[sub mu]data/R[overline nu ][sub mu]/nu[sub mu]MC=0.96-0.27+0.38(stat.)±0.15(sys.), where the errors are the statistical and systematic uncertainties. Although the statistics are limited, this is the first direct observation of atmospheric neutrino interactions separately for nuµ and [overline nu ]µ

    KIFC1-Like Motor Protein Associates with the Cephalopod Manchette and Participates in Sperm Nuclear Morphogenesis in Octopus tankahkeei

    Get PDF
    Nuclear morphogenesis is one of the most fundamental cellular transformations taking place during spermatogenesis. In rodents, a microtubule-based perinuclear structure, the manchette, and a C-terminal kinesin motor KIFC1 are believed to play crucial roles in this process. Spermatogenesis in Octopus tankahkeei is a good model system to explore whether evolution has created a cephalopod prototype of mammalian manchette-based and KIFC1-dependent sperm nuclear shaping machinery.We detected the presence of a KIFC1-like protein in the testis, muscle, and liver of O. tankahkeei by Western Blot. Then we tracked its dynamic localization in spermatic cells at various stages using Immunofluorescence and Immunogold Electron Microscopy. The KIFC1-like protein was not expressed at early stages of spermatogenesis when no significant morphological changes occur, began to be present in early spermatid, localized around and in the nucleus of intermediate and late spermatids where the nucleus was dramatically elongated and compressed, and concentrated at one end of final spermatid. Furthermore, distribution of the motor protein during nuclear elongation and condensation overlapped with that of the cephalopod counterpart of manchette at a significant level.The results support the assumption that the protein is actively involved in sperm nuclear morphogenesis in O. tankahkeei possibly through bridging the manchette-like perinuclear microtubules to the nucleus and assisting in the nucleocytoplasmic trafficking of specific cargoes. This study represents the first description of the role of a motor protein in sperm nuclear shaping in cephalopod

    A putative functional role for oligodendrocytes in mood regulation

    Get PDF
    Altered glial structure and function is implicated in several major mental illnesses and increasing evidence specifically links changes in oligodendrocytes with disrupted mood regulation. Low density and reduced expression of oligodendrocyte-specific gene transcripts in postmortem human subjects points toward decreased oligodendrocyte function in most of the major mental illnesses. Similar features are observed in rodent models of stress-induced depressive-like phenotypes, such as the unpredictable chronic mild stress and chronic corticosterone exposure, suggesting an effect downstream from stress. However, whether oligodendrocyte changes are a causal component of psychiatric phenotypes is not known. Traditional views that identify oligodendrocytes solely as nonfunctional support cells are being challenged, and recent studies suggest a more dynamic role for oligodendrocytes in neuronal functioning than previously considered, with the region adjacent to the node of Ranvier (i.e., paranode) considered a critical region of glial–neuronal interaction. Here, we briefly review the current knowledge regarding oligodendrocyte disruptions in psychiatric disorders and related animal models, with a focus on major depression. We then highlight several rodent studies, which suggest that alterations in oligodendrocyte structure and function can produce behavioral changes that are informative of mood regulatory mechanisms. Together, these studies suggest a model, whereby impaired oligodendrocyte and possibly paranode structure and function can impact neural circuitry, leading to downstream effects related to emotionality in rodents, and potentially to mood regulation in human psychiatric disorders
    • …
    corecore