2,999 research outputs found
MULTIPLE HIGH CURRENT BUNCHES IN PEP-II
Operation with colliding beams at PEP-II has progressed remarkably well with over half the design specific luminosity and 5:2 10 32 cm,2s,1 in multiple bunches demonstrated during the last commissioning period before installation of the BABAR detector. Further luminosity increases are anticipated as the vertical beam size is reduced and beam currents are raised towards design values. At high currents interesting multibunch dynamics, which depend strongly on current distribution, have been observed during single-beam commissioning studies. Transverse beam instabilities nominally controlled using bunch-by-bunch feedback were observed to be significantly suppressed, in the absence of feedback, with beams in collision.
Hydrogen-like nitrogen radio line from hot interstellar and warm-hot intergalactic gas
Hyperfine structure lines of highly-charged ions may open a new window in
observations of hot rarefied astrophysical plasmas. In this paper we discuss
spectral lines of isotopes and ions abundant at temperatures 10^5-10^7 K,
characteristic for warm-hot intergalactic medium, hot interstellar medium,
starburst galaxies, their superwinds and young supernova remnants. Observations
of these lines will allow to study bulk and turbulent motions of the observed
target and will broaden the information about the gas ionization state,
chemical and isotopic composition.
The most prospective is the line of the major nitrogen isotope having
wavelength 5.65 mm (Sunyaev and Churazov 1084). Wavelength of this line is
well-suited for observation of objects at z=0.15-0.6 when it is redshifted to
6.5-9 mm spectral band widely-used in ground-based radio observations, and, for
example, for z>=1.3, when the line can be observed in 1.3 cm band and at lower
frequencies. Modern and future radio telescopes and interferometers are able to
observe the absorption by 14-N VII in the warm-hot intergalactic medium at
redshifts above z=0.15 in spectra of brightest mm-band sources. Sub-millimeter
emission lines of several most abundant isotopes having hyperfine splitting
might also be detected in spectra of young supernova remnants.Comment: 12 pages, 5 figures, accepted by Astronomy Letters; v3: details
added; error fixe
Transverse Phase Locking for Vortex Motion in Square and Triangular Pinning Arrays
We analyze transverse phase locking for vortex motion in a superconductor
with a longitudinal DC drive and a transverse AC drive. For both square and
triangular arrays we observe a variety of fractional phase locking steps in the
velocity versus DC drive which correspond to stable vortex orbits. The locking
steps are more pronounced for the triangular arrays which is due to the fact
that the vortex motion has a periodic transverse velocity component even for
zero transverse AC drive. All the steps increase monotonically in width with AC
amplitude. We confirm that the width of some fractional steps in the square
arrays scales as the square of the AC driving amplitude. In addition we
demonstrate scaling in the velocity versus applied DC driving curves at
depinning and on the main step, similar to that seen for phase locking in
charge-density wave systems. The phase locking steps are most prominent for
commensurate vortex fillings where the interstitial vortices form symmetrical
ground states. For increasing temperature, the fractional steps are washed out
very quickly, while the main step gains a linear component and disappears at
melting. For triangular pinning arrays we again observe transverse phase
locking, with the main and several of the fractional step widths scaling
linearly with AC amplitude.Comment: 10 pages, 14 postscript figure
Dynamics of a ferromagnetic domain wall: avalanches, depinning transition and the Barkhausen effect
We study the dynamics of a ferromagnetic domain wall driven by an external
magnetic field through a disordered medium. The avalanche-like motion of the
domain walls between pinned configurations produces a noise known as the
Barkhausen effect. We discuss experimental results on soft ferromagnetic
materials, with reference to the domain structure and the sample geometry, and
report Barkhausen noise measurements on FeCoB amorphous
alloy. We construct an equation of motion for a flexible domain wall, which
displays a depinning transition as the field is increased. The long-range
dipolar interactions are shown to set the upper critical dimension to ,
which implies that mean-field exponents (with possible logarithmic correction)
are expected to describe the Barkhausen effect. We introduce a mean-field
infinite-range model and show that it is equivalent to a previously introduced
single-degree-of-freedom model, known to reproduce several experimental
results. We numerically simulate the equation in , confirming the
theoretical predictions. We compute the avalanche distributions as a function
of the field driving rate and the intensity of the demagnetizing field. The
scaling exponents change linearly with the driving rate, while the cutoff of
the distribution is determined by the demagnetizing field, in remarkable
agreement with experiments.Comment: 17 RevTeX pages, 19 embedded ps figures + 1 extra figure, submitted
to Phys. Rev.
Recommended from our members
The acute effects of cocoa flavanols on temporal and spatial attention
In this study, we investigated how the acute physiological effects of cocoa flavanols might result in specific cognitive changes, in particular in temporal and spatial attention. To this end, we pre-registered and implemented a randomized, double-blind, placebo- and baseline-controlled crossover design. A sample of 48 university students participated in the study and each of them completed the experimental tasks in four conditions (baseline, placebo, low dose, and high-dose flavanol), administered in separate sessions with a 1-week washout interval. A rapid serial visual presentation task was used to test flavanol effects on temporal attention and integration, and a visual search task was similarly employed to investigate spatial attention. Results indicated that cocoa flavanols improved visual search efficiency, reflected by reduced reaction time. However, cocoa flavanols did not facilitate temporal attention nor integration, suggesting Potential underlying mechanisms are discussed
Time Pressure Modulates Electrophysiological Correlates of Early Visual Processing
BACKGROUND: Reactions to sensory events sometimes require quick responses whereas at other times they require a high degree of accuracy-usually resulting in slower responses. It is important to understand whether visual processing under different response speed requirements employs different neural mechanisms. METHODOLOGY/PRINCIPAL FINDINGS: We asked participants to classify visual patterns with different levels of detail as real-world or non-sense objects. In one condition, participants were to respond immediately, whereas in the other they responded after a delay of 1 second. As expected, participants performed more accurately in delayed response trials. This effect was pronounced for stimuli with a high level of detail. These behavioral effects were accompanied by modulations of stimulus related EEG gamma oscillations which are an electrophysiological correlate of early visual processing. In trials requiring speeded responses, early stimulus-locked oscillations discriminated real-world and non-sense objects irrespective of the level of detail. For stimuli with a higher level of detail, oscillatory power in a later time window discriminated real-world and non-sense objects irrespective of response speed requirements. CONCLUSIONS/SIGNIFICANCE: Thus, it seems plausible to assume that different response speed requirements trigger different dynamics of processing
Massage Therapy for Osteoarthritis of the Knee: A Randomized Dose-Finding Trial
In a previous trial of massage for osteoarthritis (OA) of the knee, we demonstrated feasibility, safety and possible efficacy, with benefits that persisted at least 8 weeks beyond treatment termination.We performed a RCT to identify the optimal dose of massage within an 8-week treatment regimen and to further examine durability of response. Participants were 125 adults with OA of the knee, randomized to one of four 8-week regimens of a standardized Swedish massage regimen (30 or 60 min weekly or biweekly) or to a Usual Care control. Outcomes included the Western Ontario and McMaster Universities Arthritis Index (WOMAC), visual analog pain scale, range of motion, and time to walk 50 feet, assessed at baseline, 8-, 16-, and 24-weeks.WOMAC Global scores improved significantly (24.0 points, 95% CI ranged from 15.3-32.7) in the 60-minute massage groups compared to Usual Care (6.3 points, 95% CI 0.1-12.8) at the primary endpoint of 8-weeks. WOMAC subscales of pain and functionality, as well as the visual analog pain scale also demonstrated significant improvements in the 60-minute doses compared to usual care. No significant differences were seen in range of motion at 8-weeks, and no significant effects were seen in any outcome measure at 24-weeks compared to usual care. A dose-response curve based on WOMAC Global scores shows increasing effect with greater total time of massage, but with a plateau at the 60-minute/week dose.Given the superior convenience of a once-weekly protocol, cost savings, and consistency with a typical real-world massage protocol, the 60-minute once weekly dose was determined to be optimal, establishing a standard for future trials.ClinicalTrials.gov NCT00970008
Disorder-Induced Critical Phenomena in Hysteresis: Numerical Scaling in Three and Higher Dimensions
We present numerical simulations of avalanches and critical phenomena
associated with hysteresis loops, modeled using the zero-temperature
random-field Ising model. We study the transition between smooth hysteresis
loops and loops with a sharp jump in the magnetization, as the disorder in our
model is decreased. In a large region near the critical point, we find scaling
and critical phenomena, which are well described by the results of an epsilon
expansion about six dimensions. We present the results of simulations in 3, 4,
and 5 dimensions, with systems with up to a billion spins (1000^3).Comment: Condensed and updated version of cond-mat/9609072,``Disorder-Induced
Critical Phenomena in Hysteresis: A Numerical Scaling Analysis'
Hysteresis, Avalanches, and Disorder Induced Critical Scaling: A Renormalization Group Approach
We study the zero temperature random field Ising model as a model for noise
and avalanches in hysteretic systems. Tuning the amount of disorder in the
system, we find an ordinary critical point with avalanches on all length
scales. Using a mapping to the pure Ising model, we Borel sum the
expansion to for the correlation length exponent. We sketch a
new method for directly calculating avalanche exponents, which we perform to
. Numerical exponents in 3, 4, and 5 dimensions are in good
agreement with the analytical predictions.Comment: 134 pages in REVTEX, plus 21 figures. The first two figures can be
obtained from the references quoted in their respective figure captions, the
remaining 19 figures are supplied separately in uuencoded forma
- …