26 research outputs found
Can domestication shape Canidae brain morphology? the accessory olfactory bulb of the red fox as a case in point
Background: The accessory olfactory bulb (AOB) is the first integrative center of the vomeronasal system (VNS), and the general macroscopic, microscopic, and neurochemical organizational patterns of the AOB differ fundamentally among species. Therefore, the low degree of differentiation observed for the dog AOB is surprising. As the artificial selection pressure exerted on domestic dogs has been suggested to play a key role in the involution of the dog VNS, a wild canid, such as the fox, represents a useful model for studying the hypothetical effects of domestication on the AOB morphology.
Methods: A comprehensive histological, lectin-histochemical, and immunohistochemical study of the fox AOB was performed. Anti-Gαo and anti-Gαi2 antibodies were particularly useful, as they label the transduction cascade of the vomeronasal receptor types 1 (V1R) and 2 (V2R), respectively. Other employed antibodies included those against proteins such as microtubule-associated protein 2 (MAP-2), tubulin, glial fibrillary acidic protein, growth-associated protein 43 (GAP-43), olfactory marker protein (OMP), calbindin, and calretinin.
Results: The cytoarchitecture of the fox AOB showed a clear lamination, with neatly differentiated layers; a highly developed glomerular layer, rich in periglomerular cells; and large inner cell and granular layers. The immunolabeling of Gαi2, OMP, and GAP-43 delineated the outer layers, whereas Gαo and MAP-2 immunolabeling defined the inner layers. MAP-2 characterized the somas of AOB principal cells and their dendritic trees. Anti-calbindin and anti-calretinin antibodies discriminated neural subpopulations in both the mitral-plexiform layer and the granular cell layer, and the lectin Ulex europeus agglutinin I (UEA-I) showed selectivity for the AOB and the vomeronasal nervesS
Secondary poisoning of non-target animals in an Ornithological Zoo in Galicia (NW Spain) with anticoagulant rodenticides: a case report
The use of anticoagulants has increased in recent times as a method for controlling rodent populations. However, this increased use also provokes accidental and intentional ingestion for both animals and humans,
triggering poisoning of non-target organisms. In the present report, a clinical case of secondary-poisoning of
birds with anticoagulant rodenticides, which took place after a general rodenticide treatment in an Ornithological
Zoological Park, is described. Three birds died as a result and samples were submitted to the Veterinary Hospital
in Lugo (Galicia, NW Spain). After necropsy, samples of the birds, together with molluscs and faeces, were submitted to the Toxicology Unit of Caceres (Extremadura, W Spain) in order to detect possible chemicals. Results
from HPLC analyses revealed the presence of the rodenticides difenacoum and brodifacoum. The present report
shows that the risk of secondary exposure resulting from the scavenging of molluscs is likely to be significant.
The potential routes of uptake by invertebrates include the consumption of rodent faeces, rodent carcases, the
ingestion of soil-bound residues, and the direct consumption of poison baits.Irene de la Casa-Resino was supported by fellowship PRE09001 from Department of Employment,
Enterprise and Innovation (Gobierno de Extremadura, Spain)S
The American mink (Neovison vison) is a competent host for native European parasites
©2017. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/
This document is the Accepted version of a Published Work that appeared in final form in Veterinary Parasitology. To access the final edited and published work see https://doi.org/10.1016/j.vetpar.2017.10.004The American mink (Neovison vison) is a mustelid native to North America that was introduced in Europe and the former USSR for fur farming. Throughout the last century, accidental or deliberate escapes of mink from farms caused the establishment of stable feral populations. In fact, the American mink is considered an invasive alien species in 28 European countries. The present study evaluates the gastrointestinal and cardiopulmonary helminth fauna of the American mink in Galicia (NW Spain) to understand its role as a potential reservoir for parasites affecting other autochthonous mustelids. In the period 2008–2014, fifty American mink (35 males and 15 females) of different ages (22 immature and 28 adults) from the provinces of Lugo, Ourense and Pontevedra were captured and sacrificed. Eight parasite species were found (6 nematodes and 2 trematodes) with the following prevalences: Molineus patens (68%), Aonchotheca putorii (54%), Crenosoma melesi (10%), Aonchotheca annulosa (8%), Angiostrongylus daskalovi (6%), Aelurostrongylus spp. (2%), Troglotrema acutum (2%) and an unidentified trematode (2%). Eighty-two per cent of the mink harboured helminths, including 15 animals (30%) infected by only one parasite species, 19 (38%) by two species, 5 (10%) by three species and 2 mink (4%) by four species. All helminth species identified are native to European mustelids. Statistical models were used to evaluate if animal characteristics (age, sex and weight), date and capture area influenced the prevalence, intensity or parasite richness. Statistical differences were detected only in models for intensity of M. patens, A. putorii and C. melesi. This is the first report of Angiostrongylus daskalovi, a cardiopulmonary nematode, and A. annulosa, a gastrointestinal nematode specific of rodents, in American mink. Moreover, although the fluke T. acutum has already been cited in American mink, to our knowledge, the present study represents the first report of this trematode in the lung
A novel pathogenic mechanism for cerebellar lesions produced by Solanum bonariense in cattle
Intoxication with Solanum bonariense in cattle causes cerebellar cortical degeneration with perikaryal vacuolation, axonal swelling, and death primarily of Purkinje cells, with accumulation of electron-dense residual storage bodies in membrane-bound vesicles. The pathogenesis of this disease is not fully understood. Previously, we proposed that inhibition of protein synthesis in Purkinje cells among other altered metabolic pathways could lead to cytoskeletal alterations, subsequently altering cell-specific axonal transport. In the present study, immunohistochemical and histochemical methods were used to identify neuronal cytoskeletal alterations and axonal loss, demyelination, and astrogliosis in the cerebellum of intoxicated bovines. Samples of cerebellum from 3 natural and 4 experimental cases and 2 control bovines were studied. Immunoreactivity against neurofilament (NF)-200KDa confirmed marked loss of Purkinje neurons, and phospho-NF protein, β-tubulin, and affinity reaction against phalloidin revealed an altered perikaryal distribution of neuronal cytoskeletal proteins in the remaining Purkinje cells in intoxicated cattle. Reactive astrogliosis in every layer of the cerebellar cortex was also observed with anti–glial fibrillary acidic protein immunohistochemistry. In affected cattle, demyelination and axonal loss in the cerebellar white matter, as well as basket cell loss were demonstrated with Klüver–Barrera and Bielschowsky stains, respectively. Based on these results, we propose that neuronal cytoskeletal alterations with subsequent interference of the axonal transport in Purkinje cells may play a relevant role in the pathogenesis of this neurodegenerative disorder, and also that demyelination and axonal loss in the cerebellar white matter, as well as astrogliosis in the gray matter, likely occur secondarily to Purkinje cell degeneration and death.Facultad de Ciencias Veterinaria
A novel pathogenic mechanism for cerebellar lesions produced by Solanum bonariense in cattle
Intoxication with Solanum bonariense in cattle causes cerebellar cortical degeneration with perikaryal vacuolation, axonal swelling, and death primarily of Purkinje cells, with accumulation of electron-dense residual storage bodies in membrane-bound vesicles. The pathogenesis of this disease is not fully understood. Previously, we proposed that inhibition of protein synthesis in Purkinje cells among other altered metabolic pathways could lead to cytoskeletal alterations, subsequently altering cell-specific axonal transport. In the present study, immunohistochemical and histochemical methods were used to identify neuronal cytoskeletal alterations and axonal loss, demyelination, and astrogliosis in the cerebellum of intoxicated bovines. Samples of cerebellum from 3 natural and 4 experimental cases and 2 control bovines were studied. Immunoreactivity against neurofilament (NF)-200KDa confirmed marked loss of Purkinje neurons, and phospho-NF protein, β-tubulin, and affinity reaction against phalloidin revealed an altered perikaryal distribution of neuronal cytoskeletal proteins in the remaining Purkinje cells in intoxicated cattle. Reactive astrogliosis in every layer of the cerebellar cortex was also observed with anti–glial fibrillary acidic protein immunohistochemistry. In affected cattle, demyelination and axonal loss in the cerebellar white matter, as well as basket cell loss were demonstrated with Klüver–Barrera and Bielschowsky stains, respectively. Based on these results, we propose that neuronal cytoskeletal alterations with subsequent interference of the axonal transport in Purkinje cells may play a relevant role in the pathogenesis of this neurodegenerative disorder, and also that demyelination and axonal loss in the cerebellar white matter, as well as astrogliosis in the gray matter, likely occur secondarily to Purkinje cell degeneration and death.Facultad de Ciencias Veterinaria
Babesia microti-like piroplasm (syn. Babesia vulpes) infection in red foxes (Vulpes vulpes) in NW Spain (Galicia) and its relationship with Ixodes hexagonus
Piroplasmosis is caused by several species of protozoa such as the Babesia microti-like piroplasm (Bml), an emerging blood protozoan also known as Theileria annae or Babesia vulpes. Infection by Bml was first reported in dogs in Spain where it is endemic today. Recently, a high prevalence of Bml has been increasingly detected in red foxes (Vulpes vulpes) in European countries. The objective of this study was to determine infection levels of this parasite in foxes from Galicia, NW Spain, and ticks species infestation in these carnivores, where they are so far unknown. Samples of blood, spleen and ticks (if present) were taken from 237 hunted red foxes in the Galicia region. Blood smears were prepared for direct parasite observation, and spleen and tick samples were examined by nested PCR. Prevalences of Bml infection in Galician red foxes were estimated at 72% (171/237) by PCR and 38.23% (26/68) by direct observation. Among 837 ticks collected, the main tick identified was Ixodes hexagonus (present in 82.4% of the foxes) followed by Ixodes ricinus (12.3%), Dermacentor reticulatus (12.3%) and Rhipicephalus sanguineus sensu lato (3.5%). From 34 foxes testing positive for Bml, 616 ticks were collected: positive Bml PCR results were obtained in 55.6% (227/408) of ticks collected from 9 foxes, while the 208 ticks from the remaining 25 infected foxes returned negative PCR results. Given that canine piroplasmosis is endemic in this area, our observations point to the red fox as the main reservoir for Bml infection and the high proportion of I. hexagonus among ticks collected from red foxes suggests its likely role as vectors of B. microti-like piroplasm in this region. Further studies are needed for a better understanding of the link between the wild and domestic life cycles of this piroplasmS
High Prevalence and Diversity of Cephalosporin-Resistant Enterobacteriaceae Including Extraintestinal Pathogenic E. coli CC648 Lineage in Rural and Urban Dogs in Northwest Spain
The aim of this work was to assess the prevalence of extended spectrum-β-lactamase (ESBL)- and carbapenemase-producing Enterobacteriaceae in fecal samples recovered from rural and urban healthy dogs in Northwest Spain (Galicia) to identify potential high-risk clones and to molecularly characterize positive isolates regarding the genes coding for ESBL/pAmpC resistance and virulence. Thirty-five (19.6%) out of 179 dogs were positive for cephalosporin-resistant Enterobacteriaceae, including Escherichiacoli and Klebsiella pneumoniae (39 and three isolates, respectively). All the isolates were multidrug resistant, with high rates of resistance to different drugs, including ciprofloxacin (71.4%). A wide diversity of ESBL/pAmpC enzymes, as well as E. coli phylogroups (A, B1, C, D, E, F and clade I) were found. The eight isolates (20.5%) found to conform to the ExPEC status, belonged to clones O1:H45-clade I-ST770 (CH11-552), O18:H11-A-ST93-CC168 (CH11-neg), O23:H16-B1-ST453-CC86 (CH6-31), and O83:H42-F-ST1485-CC648 (CH231-58), with the latter also complying the uropathogenic (UPEC) status. The three K. pneumoniae recovered produced CTX-M-15 and belonged to the ST307, a clone previously reported in human clinical isolates. Our study highlights the potential role of both rural and urban dogs as a reservoir of high-risk Enterobacteriaceae clones, such as the CC648 of E. coli and antimicrobial resistance traits. Within a One-Health approach, their surveillance should be a priority in the fight against antimicrobial resistanceThis research was funded project FIS PI17-00728 (Fondo de Investigación Sanitaria, Instituto de Salud Carlos III, Ministerio de Economía y Competitividad, Spain), cofunded by the European Regional Development Fund of the European Union: a Way to Making Europe (FEDER); Project PID2019-104439RB-C21/AEI/10.13039/501100011033 and FEDER; ED431C 2017/57 from the Consellería de Cultura, Educación e Ordenación Universitaria, Xunta de Galicia and FEDER; and by the Strategic Researcher Cluster BioReDeS funded by the Regional Government Xunta de Galicia under the project no. ED431E 2018/09. D. Díaz-Jiménez and I. García-Meniño acknowledge the Consellería de Cultura, Educación e Ordenación Universitaria, Xunta de Galicia for their pre-doctoral grants (ED481A-2019/022 and ED481A-2015/149, respectively). The Research stay of I. García-Meniño at the Hospital Universitario Central de Asturias was funded by a grant from the Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica (SEIMC)S
The role of healthy dog carriers of Babesia microti-like piroplasms
While in Europe Babesia canis has been traditionally held responsible for canine piroplasmosis, Babesia microti-like piroplasm (Bml) infection is being ever more observed in dogs, with the first clinical cases reported in northwestern Spain. This study examines the epidemiological role of healthy dogs living in endemic areas of Bml infection in Spain. The data obtained were used to describe the clinical status and map the geographical distribution of Bml infection in healthy dogs in northwestern SpainThe study was funded by the own sources of the Universidad Complutense of Madrid, SpainS
Cardiopulmonary nematode infections in wild canids: Does the key lie on host-prey-parasite evolution?
©2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/
This document is the Accepted, version of a Published Work that appeared in final form in Research in Veterinary Science. To access the final edited and published work see https://doi.org/10.1016/j.rvsc.2019.08.008Cardiopulmonary nematodes are among the most pathogenic parasites of domestic and wild canids. The aim of this study was to describe the species diversity, prevalence and infection intensity of these parasites in the Iberian wolf (Canis lupus signatus) and the red fox (Vulpes vulpes) in the northwest of the Iberian Peninsula. 257 foxes and 74 wolves were necropsied between 2008 and 2014. Four nematode species were identified: Angiostrongylus vasorum, Eucoleus aerophilus, Crenosoma vulpis and Filaroides hirthi. This last species was only found in wolves, being the first time that is cited worldwide in this wild canid. The overall parasite prevalence was significantly higher in foxes (70%) than in wolves (28%). Specifically, prevalences in foxes and wolves were, respectively, 43% and 22% for A. vasorum, 33% and 5% for E. aerophilus, and 30% and 9% for C. vulpis. The prevalence of F. hirthi was 16%. The A. vasorum intensity was significantly higher in foxes than in wolves. Differences between host species in the risk of infection would be associated to diverging feeding behavior, and possibly reflects a parasite-host adaptation related to host's hunting strategies and cardiorespiratory requirements. This study revealed an association between infection and environmental factors, and highlighted a wide variation in the spatial distribution of A. vasorum. Our results indicate that cardiopulmonary parasites are widespread in wild canids in northwest Spain, and further agrees with other studies indicating the expansion of A. vasorum in Europe and, therefore, the urgent need to investigate infection in dogs in sympatric areas
A novel pathogenic mechanism for cerebellar lesions produced by Solanum bonariense in cattle
Intoxication with Solanum bonariense in cattle causes cerebellar cortical degeneration with perikaryal vacuolation, axonal swelling, and death primarily of Purkinje cells, with accumulation of electron-dense residual storage bodies in membrane-bound vesicles. The pathogenesis of this disease is not fully understood. Previously, we proposed that inhibition of protein synthesis in Purkinje cells among other altered metabolic pathways could lead to cytoskeletal alterations, subsequently altering cell-specific axonal transport. In the present study, immunohistochemical and histochemical methods were used to identify neuronal cytoskeletal alterations and axonal loss, demyelination, and astrogliosis in the cerebellum of intoxicated bovines. Samples of cerebellum from 3 natural and 4 experimental cases and 2 control bovines were studied. Immunoreactivity against neurofilament (NF)-200KDa confirmed marked loss of Purkinje neurons, and phospho-NF protein, β-tubulin, and affinity reaction against phalloidin revealed an altered perikaryal distribution of neuronal cytoskeletal proteins in the remaining Purkinje cells in intoxicated cattle. Reactive astrogliosis in every layer of the cerebellar cortex was also observed with anti–glial fibrillary acidic protein immunohistochemistry. In affected cattle, demyelination and axonal loss in the cerebellar white matter, as well as basket cell loss were demonstrated with Klüver–Barrera and Bielschowsky stains, respectively. Based on these results, we propose that neuronal cytoskeletal alterations with subsequent interference of the axonal transport in Purkinje cells may play a relevant role in the pathogenesis of this neurodegenerative disorder, and also that demyelination and axonal loss in the cerebellar white matter, as well as astrogliosis in the gray matter, likely occur secondarily to Purkinje cell degeneration and death.Facultad de Ciencias Veterinaria