1,616 research outputs found

    Spatial Resolution with Time-and-Polarization-Resolved Acoustic Microscopy

    Get PDF
    Spatial resolution is an important factor in ultrasonic materials characterization. Scanning acoustic microscopy [1–2] has proved to be a useful tool for materials evaluation with micrometer-scale spatial resolution. Point-focus-beam (PFB) acoustic microscopy has high spatial resolution and is often used to produce images as well as to probe material inhomogeneity. However, a disadvantage of the PFB technique lies in its insensitivity to material anisotropy. In contrast, line-focus-beam (LFB) acoustic microscopy can provide a directional ultrasonic velocity measurement and is employed for characterization of anisotropic materials [3–5]. But the LFB technique, with its unidirectional spatial resolution, is generally incapable of producing images, and is therefore disadvantageous for probing inhomogeneous materials. In response to this need, a variety of lens designs [6–9] in acoustic microscopy have been proposed for measuring materials, which are both inhomogeneous and anisotropic

    Covariance and Fisher information in quantum mechanics

    Get PDF
    Variance and Fisher information are ingredients of the Cramer-Rao inequality. We regard Fisher information as a Riemannian metric on a quantum statistical manifold and choose monotonicity under coarse graining as the fundamental property of variance and Fisher information. In this approach we show that there is a kind of dual one-to-one correspondence between the candidates of the two concepts. We emphasis that Fisher informations are obtained from relative entropies as contrast functions on the state space and argue that the scalar curvature might be interpreted as an uncertainty density on a statistical manifold.Comment: LATE

    Expansion of the Gibbs potential for quantum many-body systems: General formalism with applications to the spin glass and the weakly non-ideal Bose gas

    Full text link
    For general quantum systems the power expansion of the Gibbs potential and consequently the power expansion of the self energy is derived in terms of the interaction strength. Employing a generalization of the projector technique a compact representation of the general terms of the expansion results. The general aspects of the approach are discussed with special emphasis on the effects characteristic for quantum systems. The expansion is systematic and leads directly to contributions beyond mean-field of all thermodynamic quantities. These features are explicitly demonstrated and illustrated for two non-trivial systems, the infinite range quantum spin glass and the weakly interacting Bose gas. The Onsager terms of both systems are calculated, which represent the first beyond mean-field contributions. For the spin glass new TAP-like equations are presented and discussed in the paramagnetic region. The investigation of the Bose gas leads to a beyond mean-field thermodynamic description. At the Bose-Einstein condensation temperature complete agreement is found with the results presented recently by alternative techniques.Comment: 17 pages, 0 figures; revised version accepted by Phys Rev

    Nuclear Shape Fluctuations in Fermi-Liquid Drop Model

    Get PDF
    Within the nuclear Fermi-liquid drop model, quantum and thermal fluctuations are considered by use of the Landau-Vlasov-Langevin equation. The spectral correlation function of the nuclear surface fluctuations is evaluated in a simple model of an incompressible and irrotational Fermi liquid. The dependence of the spectral correlation function on the dynamical Fermi-surface distortion is established. The temperature at which the eigenvibrations become overdamped is calculated. It is shown that, for realistic values of the relaxation time parameter and in the high temperature regime, there is a particular eigenmode of the Fermi liquid drop where the restoring force is exclusively due to the dynamical Fermi-surface distortion.Comment: 23 pages, revtex, file and 3 figures, accepted for publication in Nuclear Physics

    Density-operator approaches to transport through interacting quantum dots: Simplifications in fourth-order perturbation theory

    Get PDF
    Various theoretical methods address transport effects in quantum dots beyond single-electron tunneling while accounting for the strong interactions in such systems. In this paper we report a detailed comparison between three prominent approaches to quantum transport: the fourth-order Bloch-Redfield quantum master equation (BR), the real-time diagrammatic technique (RT), and the scattering rate approach based on the T-matrix (TM). Central to the BR and RT is the generalized master equation for the reduced density matrix. We demonstrate the exact equivalence of these two techniques. By accounting for coherences (nondiagonal elements of the density matrix) between nonsecular states, we show how contributions to the transport kernels can be grouped in a physically meaningful way. This not only significantly reduces the numerical cost of evaluating the kernels but also yields expressions similar to those obtained in the TM approach, allowing for a detailed comparison. However, in the TM approach an ad hoc regularization procedure is required to cure spurious divergences in the expressions for the transition rates in the stationary (zero-frequency) limit. We show that these problems derive from incomplete cancellation of reducible contributions and do not occur in the BR and RT techniques, resulting in well-behaved expressions in the latter two cases. Additionally, we show that a standard regularization procedure of the TM rates employed in the literature does not correctly reproduce the BR and RT expressions. All the results apply to general quantum dot models and we present explicit rules for the simplified calculation of the zero-frequency kernels. Although we focus on fourth-order perturbation theory only, the results and implications generalize to higher orders. We illustrate our findings for the single impurity Anderson model with finite Coulomb interaction in a magnetic field.Comment: 29 pages, 12 figures; revised published versio

    Diffusion in multiscale spacetimes

    Get PDF
    We study diffusion processes in anomalous spacetimes regarded as models of quantum geometry. Several types of diffusion equation and their solutions are presented and the associated stochastic processes are identified. These results are partly based on the literature in probability and percolation theory but their physical interpretation here is different since they apply to quantum spacetime itself. The case of multiscale (in particular, multifractal) spacetimes is then considered through a number of examples and the most general spectral-dimension profile of multifractional spaces is constructed.Comment: 23 pages, 5 figures. v2: discussion improved, typos corrected, references adde

    Constraints on Gamma-ray Emission from the Galactic Plane at 300 TeV

    Get PDF
    We describe a new search for diffuse ultrahigh energy gamma-ray emission associated with molecular clouds in the galactic disk. The Chicago Air Shower Array (CASA), operating in coincidence with the Michigan muon array (MIA), has recorded over 2.2 x 10^{9} air showers from April 4, 1990 to October 7, 1995. We search for gamma rays based upon the muon content of air showers arriving from the direction of the galactic plane. We find no significant evidence for diffuse gamma-ray emission, and we set an upper limit on the ratio of gamma rays to normal hadronic cosmic rays at less than 2.4 x 10^{-5} at 310 TeV (90% confidence limit) from the galactic plane region: (50 degrees < l < 200 degrees); -5 degrees < b < 5 degrees). This limit places a strong constraint on models for emission from molecular clouds in the galaxy. We rule out significant spectral hardening in the outer galaxy, and conclude that emission from the plane at these energies is likely to be dominated by the decay of neutral pions resulting from cosmic rays interactions with passive target gas molecules.Comment: Astrophysical Journal, submitted, 11 pages, AASTeX Latex, 3 Postscript figure

    Atmospheric Calorimetry above 1019^{19} eV: Shooting Lasers at the Pierre Auger Cosmic-Ray Observatory

    Full text link
    The Pierre Auger Cosmic-Ray Observatory uses the earth's atmosphere as a calorimeter to measure extensive air-showers created by particles of astrophysical origin. Some of these particles carry joules of energy. At these extreme energies, test beams are not available in the conventional sense. Yet understanding the energy response of the observatory is important. For example, the propagation distance of the highest energy cosmic-rays through the cosmic microwave background radiation (CMBR) is predicted to be strong function of energy. This paper will discuss recently reported results from the observatory and the use of calibrated pulsed UV laser "test-beams" that simulate the optical signatures of ultra-high energy cosmic rays. The status of the much larger 200,000 km3^3 companion detector planned for the northern hemisphere will also be outlined.Comment: 6 pages, 11 figures XIII International Conference on Calorimetry in High Energy Physic

    Patient-specific instrumentation does not improve radiographic alignment or clinical outcomes after total knee arthroplasty: A meta-analysis

    Get PDF
    Background and purpose: Patient-specific instrumentation (PSI) for total knee arthroplasty (TKA) has been introduced to improve alignment and reduce outliers, increase efficiency, and reduce operation time. In order to improve our understanding of the outcomes of patient-specific instrumentation, we conducted a meta-analysis. Patients and methods: We identified randomized and quasi-randomized controlled trials (RCTs) comparing patient-specific and conventional instrumentation in TKA. Weighted mean differences and risk ratios were determined for radiographic accuracy, operation time, hospital stay, blood loss, number of surgical trays required, and patient-reported outcome measures. Results: 21 RCTs involving 1,587 TKAs were included. Patient-specific instrumentation resulted in slightly more accurate hip-knee-ankle axis (0.3°), coronal femoral alignment (0.3°, femoral flexion (0.9°), tibial slope (0.7°), and femoral component rotation (0.5°). The risk ratio of a coronal plane outlier (\u3e 3° deviation of chosen target) for the tibial component was statistically significantly increased in the PSI group (RR = 1.64). No significance was found for other radiographic measures. Operation time, blood loss, and transfusion rate were similar. Hospital stay was significantly shortened, by approximately 8 h, and the number of surgical trays used decreased by 4 in the PSI group. Knee Society scores and Oxford knee scores were similar. Interpretation: Patient-specific instrumentation does not result in clinically meaningful improvement in alignment, fewer outliers, or better early patient-reported outcome measures. Efficiency is improved by reducing the number of trays used, but PSI does not reduce operation time
    corecore