12 research outputs found

    Linear Wave Interaction with a Vertical Cylinder of Arbitrary Cross Section: An Asymptotic Approach

    Get PDF
    An asymptotic approach to the linear problem of regular water waves interacting with a vertical cylinder of an arbitrary cross section is presented. The incident regular wave was one-dimensional, water was of finite depth, and the rigid cylinder extended from the bottom to the water surface. The nondimensional maximum deviation of the cylinder cross section from a circular one plays the role of a small parameter of the problem. A fifth-order asymptotic solution of the problem was obtained. The problems at each order were solved by the Fourier method. It is shown that the first-order velocity potential is a linear function of the Fourier coefficients of the shape function of the cylinder, the second-order velocity potential is a quadratic function of these coefficients, and so on. The hydrodynamic forces acting on the cylinder and the water surface elevations on the cylinder are presented. The present asymptotic results show good agreement with numerical and experimental results of previous investigations. Long-wave approximation of the hydrodynamic forces was derived and used for validation of the asymptotic solutions. The obtained values of the forces are exact in the limit of zero wave numbers within the linear wave theory. An advantage of the present approach compared with the numerical solution of the problem by an integral equation method is that it provides the forces and the diffracted wave field in terms of the coefficients of the Fourier series of the deviation of the cylinder shape from the circular one. The resulting asymptotic formula can be used for optimization of the cylinder shape in terms of the wave loads and diffracted wave fields

    The NMDA antagonist ketamine and the 5-HT agonist psilocybin produce dissociable effects on structural encoding of emotional face expressions

    Full text link
    RATIONALE: Both glutamate and serotonin (5-HT) play a key role in the pathophysiology of emotional biases. Recent studies indicate that the glutamate N-methyl-D-aspartate (NMDA) receptor antagonist ketamine and the 5-HT receptor agonist psilocybin are implicated in emotion processing. However, as yet, no study has systematically compared their contribution to emotional biases. OBJECTIVES: This study used event-related potentials (ERPs) and signal detection theory to compare the effects of the NMDA (via S-ketamine) and 5-HT (via psilocybin) receptor system on non-conscious or conscious emotional face processing biases. METHODS: S-ketamine or psilocybin was administrated to two groups of healthy subjects in a double-blind within-subject placebo-controlled design. We behaviorally assessed objective thresholds for non-conscious discrimination in all drug conditions. Electrophysiological responses to fearful, happy, and neutral faces were subsequently recorded with the face-specific P100 and N170 ERP. RESULTS: Both S-ketamine and psilocybin impaired the encoding of fearful faces as expressed by a reduced N170 over parieto-occipital brain regions. In contrast, while S-ketamine also impaired the encoding of happy facial expressions, psilocybin had no effect on the N170 in response to happy faces. CONCLUSION: This study demonstrates that the NMDA and 5-HT receptor systems differentially contribute to the structural encoding of emotional face expressions as expressed by the N170. These findings suggest that the assessment of early visual evoked responses might allow detecting pharmacologically induced changes in emotional processing biases and thus provides a framework to study the pathophysiology of dysfunctional emotional biases
    corecore