37 research outputs found

    Electrochemical determination of hydroquinone using hydrophobic ionic liquid-type carbon paste electrodes

    Get PDF
    Three types of carbon paste electrodes (CPEs) with different liquid binders were fabricated, and their electrochemical behavior was characterized via a potassium hexacyanoferrate(II) probe. 1-Octyl-3-methylimidazolium hexafluorophosphate ionic liquid (IL) as a hydrophobic conductive pasting binder showed better electrochemical performance compared with the commonly employed binder. The IL-contained CPEs demonstrated excellent electroactivity for oxidation of hydroquinone. A diffusion control mechanism was confirmed and the diffusion coefficient (D) of 5.05 × 10-4 cm2 s-1 was obtained. The hydrophobic IL-CPE is promising for the determination of hydroquinone in terms of high sensitivity, easy operation, and good durability

    Antimicrobial and Efflux Pump Inhibitory Activity of Caffeoylquinic Acids from Artemisia absinthium against Gram-Positive Pathogenic Bacteria

    Get PDF
    Background: Traditional antibiotics are increasingly suffering from the emergence of multidrug resistance amongst pathogenic bacteria leading to a range of novel approaches to control microbial infections being investigated as potential alternative treatments. One plausible antimicrobial alternative could be the combination of conventional antimicrobial agents/antibiotics with small molecules which block multidrug efflux systems known as efflux pump inhibitors. Bioassay-driven purification and structural determination of compounds from plant sources have yielded a number of pump inhibitors which acted against gram positive bacteria. Methodology/Principal Findings: In this study we report the identification and characterization of 4′,5′-O-dicaffeoylquinic acid (4′,5′-ODCQA) from Artemisia absinthium as a pump inhibitor with a potential of targeting efflux systems in a wide panel of Gram-positive human pathogenic bacteria. Separation and identification of phenolic compounds (chlorogenic acid, 3′,5′-ODCQA, 4′,5′-ODCQA) was based on hyphenated chromatographic techniques such as liquid chromatography with post column solid-phase extraction coupled with nuclear magnetic resonance spectroscopy and mass spectroscopy. Microbial susceptibility testing and potentiation of well know pump substrates revealed at least two active compounds; chlorogenic acid with weak antimicrobial activity and 4′,5′-ODCQA with pump inhibitory activity whereas 3′,5′-ODCQA was ineffective. These intitial findings were further validated with checkerboard, berberine accumulation efflux assays using efflux-related phenotypes and clinical isolates as well as molecular modeling methodology. Conclusions/Significance: These techniques facilitated the direct analysis of the active components from plant extracts, as well as dramatically reduced the time needed to analyze the compounds, without the need for prior isolation. The calculated energetics of the docking poses supported the biological information for the inhibitory capabilities of 4′,5′-ODCQA and furthermore contributed evidence that CQAs show a preferential binding to Major Facilitator Super family efflux systems, a key multidrug resistance determinant in gram-positive bacteria.National Institutes of Health (U.S.) (grant R01GM59903)National Institutes of Health (U.S.) (grant R01AI050875)Netherlands Organization for Scientific Research (VICI grant 700.56.442)Massachusetts Technology Transfer Center (MTTC)National Institutes of Health (U.S.) (grant 5U54MH084690-02

    Allosteric Analysis of Glucocorticoid Receptor-DNA Interface Induced by Cyclic Py-Im Polyamide: A Molecular Dynamics Simulation Study

    Get PDF
    Background: It has been extensively developed in recent years that cell-permeable small molecules, such as polyamide, can be programmed to disrupt transcription factor-DNA interfaces and can silence aberrant gene expression. For example, cyclic pyrrole-imidazole polyamide that competes with glucocorticoid receptor (GR) for binding to glucocorticoid response elements could be expected to affect the DNA dependent binding by interfering with the protein-DNA interface. However, how such small molecules affect the transcription factor-DNA interfaces and gene regulatory pathways through DNA structure distortion is not fully understood so far. Methodology/Principal Findings: In the present work, we have constructed some models, especially the ternary model of polyamides+DNA+GR DNA-binding domain (GRDBD) dimer, and carried out molecular dynamics simulations and free energy calculations for them to address how polyamide molecules disrupt the GRDBD and DNA interface when polyamide and protein bind at the same sites on opposite grooves of DNA. Conclusions/Significance: We found that the cyclic polyamide binding in minor groove of DNA can induce a large structural perturbation of DNA, i.e. a.4 A ˚ widening of the DNA minor groove and a compression of the major groove by more than 4A ˚ as compared with the DNA molecule in the GRDBD dimer+DNA complex. Further investigations for the ternary system of polyamides+DNA+GRDBD dimer and the binary system of allosteric DNA+GRDBD dimer revealed that the compression o

    Determination of total cadmium, lead, arsenic, mercury and inorganic arsenic in mushrooms: outcome of IMEP-116 and IMEP-39

    No full text
    The Institute for Reference Materials and Measurements (IRMM) of the Joint Research Centre (JRC), a Directorate General of the European Commission, operates the International Measurement Evaluation Program (IMEP). IMEP organises interlaboratory comparisons in support of European Union policies. This paper presents the results of two proficiency tests (PTs): IMEP-116 and IMEP-39, organised for the determination of total Cd, Pb, As, Hg and inorganic As (iAs) in mushrooms. Participation in IMEP-116 was restricted to National Reference Laboratories (NRLs) officially appointed by national authorities in European Union member states. IMEP-39 was open to all other laboratories wishing to participate. Thirty seven participants from 25 countries reported results in IMEP-116, and 62 laboratories from 36 countries reported for the IMEP-39 study. Both PTs were organised in support to Regulation (EC) No. 1881/2006, which sets the maximum levels for certain contaminants in food. The test item used in both PTs was a blend of mushrooms of the variety shiitake (Lentinula edodes). Five laboratories, with demonstrated measurement capability in the field, provided results to establish the assigned values (Xref). The standard uncertainties associated to the assigned values (uref) were calculated by combining the uncertainty of the characterisation (uchar) with a contribution for homogeneity (ubb) and for stability (ust), whilst uchar was calculated following ISO 13528. Laboratory results were rated with z- and zeta (ζ)-scores in accordance with ISO 13528. The standard deviation for proficiency assessment, σp, ranged from 10% to 20% depending on the analyte. The percentage of satisfactory z scores ranged from 81% (iAs) to 97% (total Cd) in IMEP-116 and from 64% (iAs) to 84% (total Hg) in IMEP-39
    corecore