465 research outputs found

    Does resistance really carry a fitness cost?

    Get PDF
    This is the final version of the article. Available from Elsevier via the DOI in this record.Insecticide resistance mutations are widely assumed to carry fitness costs. However studies to measure such costs are rarely performed on genetically related strains and are often only done in the laboratory. Theory also suggests that once evolved the cost of resistance can be offset by the evolution of fitness modifiers. But for insecticide resistance only one such example is well documented. Here we critically examine the literature on fitness costs in the absence of pesticide and ask if our knowledge of molecular biology has helped us predict the costs associated with different resistance mechanisms. We find that resistance alleles can arise from pre-existing polymorphisms and resistance associated variation can also be maintained by sexual antagonism. We describe novel mechanisms whereby both resistant and susceptible alleles can be maintained in permanent heterozygosis and discuss the likely consequences for fitness both in the presence and absence of pesticide. Taken together these findings suggest that we cannot assume that resistance always appears de novo and that our assumptions about the associated fitness costs need to be informed by a deeper understanding of the underlying molecular biology.Work on insecticide resistance in the ffrench-Constant and Bass laboratories is supported by the BBSRC (BB/H014268 to R. ff-C), the Royal Society (Wolfson Merit Award to R. ff-C) and the ERC (ERC Consolidator award to CB)

    The neural stem cell microenvironment

    Get PDF
    In mammals, neural stem cells appear early in development and remain active within the central nervous system for the whole life duration of the organism. During this developmental process they assume different cellular morphologies and reside within changing microenvironments whilst retaining the basic properties of a stem cell: multipotentiality and the ability to self renew. In this chapter, the basic morphological characteristics of neural stem cells will be reviewed, along with the fundamental structural components and signalling molecules of their microenvironments. In early neural development, when the patterning of the nervous system is established, neural stem cells are called neuroepithelial cells; they are situated among other neuroepithelial cells and they are exposed to various signals such as retinoic acid, sonic hedgehog and fibroblast growth factors. When neurogenesis commences, stem cells are transformed to radial glial cells and the complexity of their microenvironment increases due to the emergence of various types of neuronal progenitors, differentiated cells and extracellular signaling molecules. Finally, during adulthood, neural stem cells assume astroglial morphology and reside in specific microenvironments that are called neurogenic niches; small neurogenic islands where neurons and glia are continuously generated under the control of mechanisms largely similar to those operating during embryonic development

    Ion channels as insecticide targets.

    Get PDF
    Published onlineJournal ArticleIon channels remain the primary target of most of the small molecule insecticides. This review examines how the subunit composition of heterologously expressed receptors determines their insecticide-specific pharmacology and how the pharmacology of expressed receptors differs from those found in the insect nervous system. We find that the insecticide-specific pharmacology of some receptors, like that containing subunits of the Rdl encoded GABA receptor, can be reconstituted with very few of the naturally occurring subunits expressed. In contrast, workers have struggled even to express functional insect nicotinic acetylcholine receptors (nAChRs), and work has therefore often relied upon the expression of vertebrate receptor subunits in their place. We also examine the extent to which insecticide-resistance-associated mutations, such as those in the para encoded voltage-gated sodium channel, can reveal details of insecticide-binding sites and mode of action. In particular, we examine whether mutations are present in the insecticide-binding site and/or at sites that allosterically affect the drug preferred conformation of the receptor. We also discuss the ryanodine receptor as a target for the recently developed diamides. Finally, we examine the lethality of the genes encoding these receptor subunits and discuss how this might determine the degree of conservation of the resistance-associated mutations found

    Temperature-driven selection on metabolic traits increases the strength of an algal-grazer interaction in naturally warmed streams

    Get PDF
    This is the author accepted manuscript. The final version is available from the publisher via the DOI in this record.Trophic interactions are important determinants of the structure and functioning of ecosystems. As the metabolism and consumption rates of ectotherms increase sharply with temperature, there are major concerns that global warming will increase the strength of trophic interactions, destabilizing food webs, and altering ecosystem structure and function. We used geothermally warmed streams that span an 11°C temperature gradient to investigate the interplay between temperature-driven selection on traits related to metabolism and resource acquisition, and the interaction strength between the keystone gastropod grazer, Radix balthica, and a common algal resource. Populations from a warm stream (~28°C) had higher maximal metabolic rates and optimal temperatures than their counterparts from a cold stream (~17°C). We found that metabolic rates of the population originating from the warmer stream were higher across all measurement temperatures. A reciprocal transplant experiment demonstrated that the interaction strengths between the grazer and its algal resource were highest for both populations when transplanted into the warm stream. In line with the thermal dependence of respiration, interaction strengths involving grazers from the warm stream were always higher than those with grazers from the cold stream. These results imply that increases in metabolism and resource consumption mediated by the direct, thermodynamic effects of higher temperatures on physiological rates are not mitigated by metabolic compensation in the long-term, and suggest that warming will increase the strength of algal-grazer interactions with likely knock-on effects for the biodiversity and productivity of aquatic ecosystems. This article is protected by copyright. All rights reserved.Leverhulme Trust Research , Grant/AwardNumber: RP G-2013-335; ERC-StG, Grant/Award Number : ERC-StG 67727

    An Integrin-Contactin Complex Regulates CNS Myelination by Differential Fyn Phosphorylation

    Get PDF
    The understanding of how adhesion molecules mediate the axon-glial interactions in the CNS that ensure target-dependent survival of oligodendrocytes and initiate myelination remains incomplete. Here, we investigate how signals from adhesion molecules can be integrated to regulate these initial steps of myelination. We first demonstrate that the Ig superfamily molecule contactin is associated in oligodendrocytes with integrins, extracellular matrix receptors that regulate target-dependent survival by amplification of growth factor signaling. This amplification is inhibited by small interfering RNA-mediated knockdown of contactin in oligodendrocytes. In contrast, the presence of L1-Fc, the extracellular portion of a contactin ligand expressed on axons, enhanced survival and additionally promoted myelination in cocultures of neurons and oligodendrocytes. We further demonstrate that the signals from contactin and integrin are integrated by differential phosphorylation of the Src family kinase Fyn. Integrin induced dephosphorylation of the inhibitory Tyr-531, whereas contactin increased phosphorylation of both Tyr-531 and the activating Tyr-420. The combined effect is an enhanced activity of Fyn and also a dynamic regulation of the phosphorylation/dephosphorylation balance of Fyn, as required for normal cell adhesion and spreading. We conclude, therefore, that a novel integrin/contactin complex coordinates signals from extracellular matrix and the axonal surface to regulate both oligodendrocyte survival and myelination by controlling Fyn activity

    The late response of rat subependymal zone stem and progenitor cells to stroke is restricted to directly affected areas of their niche

    Get PDF
    Ischaemia leads to increased proliferation of progenitors in the subependymal zone (SEZ) neurogenic niche of the adult brain and to generation and migration of newborn neurons. Here we investigated the spatiotemporal characteristics of the mitotic activity of adult neural stem and progenitor cells in the SEZ during the sub-acute and chronic post-ischaemic phases. Ischaemia was induced by performing a 1 h unilateral middle cerebral artery occlusion (MCAO) and tissue was collected 4/5 weeks and 1 year after the insult. Neural stem cells (NSCs) responded differently from their downstream progenitors to MCAO, with NSCs being activated only transiently whilst progenitors remain activated even at 1 year post-injury. Importantly, mitotic activation was observed only in the affected areas of the niche and specifically in the dorsal half of the SEZ. Analysis of the topography of mitoses, in relation to the anatomy of the lesion and to the position of ependymal cells and blood vessels, suggested an interplay between lesion-derived recruiting signals and the local signals that normally control proliferation in the chronic post-ischaemic phase

    Combinatorial ECM Arrays Identify Cooperative Roles for Matricellular Proteins in Enhancing the Generation of TH+ Neurons From Human Pluripotent Cells.

    Get PDF
    The development of efficient cell culture strategies for the generation of dopaminergic neurons is an important goal for transplantation-based approaches to treat Parkinson's disease. To identify extracellular matrix molecules that enhance differentiation and might be used in these cell cultures we have used micro-contact printed arrays on glass slides presenting 190 combinations of 19 extracellular matrix molecules selected on the basis of their expression during embryonic development of the ventral midbrain. Using long-term neuroepithelial stem cells (Lt-NES), this approach identified a number of matricellular proteins that enhanced differentiation, with the combination of Sparc, Sparc-like (Sparc-l1) and Nell2 increasing the number of tyrosine hydroxylase+ neurons derived from Lt-NES cells and, critically for further translation, human pluripotent stem cells

    VEGF preconditioning leads to stem cell remodeling and attenuates age-related decay of adult hippocampal neurogenesis

    Get PDF
    Several factors are known to enhance adult hippocampal neurogenesis but a factor capable of inducing a long-lasting neurogenic enhancement that attenuates age-related neurogenic decay has not been described. Here, we studied hippocampal neurogenesis following conditional VEGF induction in the adult brain and showed that a short episode of VEGF exposure withdrawn shortly after the generation of durable new vessels (but not under conditions where newly made vessels failed to persist) is sufficient for neurogenesis to proceed at a markedly elevated level for many months later. Continual neurogenic increase over several months was not accompanied by accelerated exhaustion of the neuronal stem cell (NSC) reserve, thereby allowing neurogenesis to proceed at a markedly elevated rate also in old mice. Neurogenic enhancement by VEGF preconditioning was, in part, attributed to rescue of age-related NSC quiescence. Remarkably, VEGF caused extensive NSC remodelling manifested in transition of the enigmatic NSC terminal arbor onto long cytoplasmic processes engaging with and spreading over even remote blood vessels, a configuration reminiscent of early postnatal "juvenile" NSCs. Together, these findings suggest that VEGF preconditioning might be harnessed for long-term neurogenic enhancement despite continued exposure to an "aged" systemic milieu

    Oligodendrocyte HCN2 channels regulate myelin sheath length

    Get PDF
    Oligodendrocytes generate myelin sheaths vital for the formation, health and function of the central nervous system (CNS). Myelin sheath length is a key property that determines axonal conduction velocity and is known to be variable across the CNS. Myelin sheath length can be modified by neuronal activity, suggesting that dynamic regulation of sheath length might contribute to the functional plasticity of neural circuits. Although the mechanisms that establish and refine myelin sheath length are important determinants of brain function, our understanding of these remains limited. In recent years, the membranes of myelin sheaths have been increasingly recognised to contain ion channels and transporters that are associated with specific important oligodendrocyte functions, including metabolic support of axons and the regulation of ion homeostasis, but none have been shown to influence sheath architecture. In this study, we determined that hyperpolarisation-activated, cyclic nucleotide-gated (HCN) channels, typically associated with neuronal and cardiac excitability, regulate myelin sheath length. Using both in vivo and in vitro approaches, we show that oligodendrocytes abundantly express functional, predominantly HCN2 subunit-containing channels. These HCN channels retain key pharmacological and biophysical features and regulate the resting membrane potential of myelinating oligodendrocytes. Further, reduction of their function via pharmacological blockade or generation of transgenic mice with two independent oligodendrocyte-specific HCN2 knock out strategies reduced myelin sheath length. We conclude that HCN2 channels are key determinants of myelin sheath length in the CNS
    • …
    corecore