39 research outputs found

    Chemical evidence of dairying by hunter-gatherers in the highlands of Lesotho in the late first millennium AD

    Get PDF
    The recovery of Early Iron Age artefacts and domestic animal remains from hunter-gatherer contexts at Likoaeng, Lesotho, has been argued to indicate contact between highland hunter-gatherers and Early Iron Age agropastoralist communities settled in lowland areas of southeastern Africa during the second half of the first millennium ad. However, disagreement between archaeozoological studies and ancient DNA means that the possibility that those hunter-gatherers kept livestock themselves remains controversial. Here we report analyses of pottery-absorbed organic residues from two hunter-gatherer sites and one agriculturalist site in highland Lesotho to reconstruct prehistoric subsistence practices. Our results demonstrate the exploitation of secondary products from domestic livestock by hunter-gatherers in Lesotho, directly dated to the seventh century ad at Likoaeng and the tenth century ad at the nearby site of Sehonghong. The data provide compelling evidence for the keeping of livestock by hunter-gatherer groups and their probable incorporation as ancillary resources into their subsistence strategies

    Combining collagen extraction with mineral Zn isotope analyses from a single sample for robust palaeoecological investigations

    Get PDF
    Collagen extraction from bones or dentine, commonly used for radiocarbon (14C) dating and stable carbon and nitrogen isotope (ÎŽ13C and ÎŽ15N) analyses, involves the dissolution of the bioapatite of skeletal elements. This fraction is typically disposed of during pretreatment. Here, we test the possibility of utilising this dissolved mineral solution for analysis of the bioapatite zinc isotope composition (ÎŽ66Zn). Bioapatite ÎŽ66Zn is a novel trophic level indicator similar to collagen ÎŽ15N but with isotopic fractionation independent from nitrogen, thus providing additional dietary information. We tested ways to minimise Zn contamination of the dissolved mineral phase during collagen extraction. We then used archaeological bone samples from Ain Difla (Jordan) and Ranis (Germany) to compare ÎŽ66Zn values of dissolved bioapatite following our collagen extraction protocol with ÎŽ66Zn values from the same sample material dissolved in a metal-free cleanroom. Our results demonstrate that with only minor adjustments to minimise Zn contamination, the dissolved mineral solution from collagen extraction protocols commonly employed for 14C dating and (palaeo)dietary analysis can be used for additional ÎŽ66Zn analyses even when collagen extraction does not take place in a cleanroom. Our protocol allows us to gain an additional dietary proxy to complement ÎŽ15N trophic level interpretations and perform more robust (palaeo)ecological investigations without further destructive sampling

    Subarctic climate for the earliest Homo sapiens in Europe

    Get PDF
    Acknowledgments The re-excavation of Bacho Kiro Cave was jointly conducted by the National Institute of Archaeology with Museum, Bulgarian Academy of Sciences, Sofia and the Department of Human Evolution at the MPI-EVA. We would like to thank the National Museum of Natural History (Sofia), the Archaeology Department at the New Bulgarian University (Sofia), the Regional Museum of History in Gabrovo, and the History Museum in Dryanovo for assistance on this project and the opportunity to study the Bacho Kiro Cave faunal material. We would like to thank M. Trost, S. Hesse, M. Kaniecki, and P. Dittmann (MPI-EVA) for technical assistance during stable isotope sample preparation. S. Steinbrenner is thanked for technical assistance with TC/EA-IRMS maintenance. Thanks are also due to H. Temming and U. Schwarz (MPI-EVA) for the production of microCT scans and replicas of the sample materials. We would also like to acknowledge the assistance of to D. Veres with taking OSL samples. Last but not least we would like to thank the handling editor, S. Ortman, as well as three anonymous reviewers for their thoughtful comments that greatly improved this manuscript. Funding: The field work was financed by the Max Planck Society. The stable isotope work was funded by the Max Planck Society as part of S.P.’s doctoral project. S.P. was supported by the Max Planck Society and the University of Aberdeen. K.B. was supported by a Philip Leverhulme Prize from The Leverhulme Trust (PLP-2019-284). N.B.’s work was supported as part of a grant by the German Research Foundation (“PALÄODIET” Project 378496604). V.A. was supported by a grant from the Foundation for Science and Technology, Portugal (IF/01157/2015/CP1308/CT0002). Author contributions: The study was devised by S.P., K.B., S.P.M., J.-J.H., and T.T. Archaeological excavation was undertaken by N.S. and T.T. in collaboration with Z.R. and S.P.M. who all contributed contextual information. V.A. collected sedimentological data at the site and untertook micromorphological investigations that provided information on site formation for this study. Zooarchaeological and paleontological analyses were performed by G.M.S. and R.S. OSL dating was carried out by T.L. Radiocarbon dating and recalibration of radiocarbon dates were conducted by H.F. MC-ICPMS analysis was conducted by N.B. and S.P. Sampling, sample processing for oxygen and strontium stable isotope analysis, and TC/EA-IRMS analysis were carried out by S.P. Code and data analyses were written and conducted by S.P. N.-H.T. consulted on statistical analysis and coding. S.P. wrote the paper with input from all authors. Competing interests: The authors declare that they have no competing interests. Data and materials availability: All data needed to evaluate the conclusions in the paper are present in the paper and/or the Supplementary Materials.Peer reviewedPublisher PD

    Ancient DNA reveals interstadials as a driver of common vole population dynamics during the last glacial period

    Get PDF
    Aim Many species experienced population turnover and local extinction during the Late Pleistocene. In the case of megafauna, it remains challenging to disentangle climate change and the activities of Palaeolithic hunter-gatherers as the main cause. In contrast, the impact of humans on rodent populations is likely to be negligible. This study investigated which climatic and/or environmental factors affect the population dynamics of the common vole. This temperate rodent is widespread across Europe and was one of the most abundant small mammal species throughout the Late Pleistocene. Location Europe. Taxon Common vole (Microtus arvalis). Methods We generated a dataset comprised of 4.2 kb long fragment of mitochondrial DNA (mtDNA) from 148 ancient and 51 modern specimens sampled from multiple localities across Europe and covering the last 60 thousand years (ka). We used Bayesian inference to reconstruct their phylogenetic relationships and to estimate the age of the specimens that were not directly dated. Results We estimated the time to the most recent common ancestor of all last glacial and extant common vole lineages to be 90 ka ago and the divergence of the main mtDNA lineages present in extant populations to between 55 and 40 ka ago, which is earlier than most previous estimates. We detected several lineage turnovers in Europe during the period of high climate variability at the end of Marine Isotope Stage 3 (MIS 3; 57-29 ka ago) in addition to those found previously around the Pleistocene/Holocene transition. In contrast, data from the Western Carpathians suggest continuity throughout the Last Glacial Maximum (LGM) even at high latitudes. Main Conclusions The main factor affecting the common vole populations during the last glacial period was the decrease in open habitat during the interstadials, whereas climate deterioration during the LGM had little impact on population dynamics. This suggests that the rapid environmental change rather than other factors was the major force shaping the histories of the Late Pleistocene faunas.info:eu-repo/semantics/publishedVersio

    Palaeogenomics of Upper Palaeolithic to Neolithic European hunter-gatherers

    Get PDF
    Modern humans have populated Europe for more than 45,000 years1,2. Our knowledge of the genetic relatedness and structure of ancient hunter-gatherers is however limited, owing to the scarceness and poor molecular preservation of human remains from that period3. Here we analyse 356 ancient hunter-gatherer genomes, including new genomic data for 116 individuals from 14 countries in western and central Eurasia, spanning between 35,000 and 5,000 years ago. We identify a genetic ancestry profile in individuals associated with Upper Palaeolithic Gravettian assemblages from western Europe that is distinct from contemporaneous groups related to this archaeological culture in central and southern Europe4, but resembles that of preceding individuals associated with the Aurignacian culture. This ancestry profile survived during the Last Glacial Maximum (25,000 to 19,000 years ago) in human populations from southwestern Europe associated with the Solutrean culture, and with the following Magdalenian culture that re-expanded northeastward after the Last Glacial Maximum. Conversely, we reveal a genetic turnover in southern Europe suggesting a local replacement of human groups around the time of the Last Glacial Maximum, accompanied by a north-to-south dispersal of populations associated with the Epigravettian culture. From at least 14,000 years ago, an ancestry related to this culture spread from the south across the rest of Europe, largely replacing the Magdalenian-associated gene pool. After a period of limited admixture that spanned the beginning of the Mesolithic, we find genetic interactions between western and eastern European hunter-gatherers, who were also characterized by marked differences in phenotypically relevant variants

    Genomic and dietary discontinuities during the Mesolithic and Neolithic in Sicily

    Get PDF
    Sicily is a key region for understanding the agricultural transition in the Mediterranean because of its central position. Here, we present genomic and stable isotopic data for 19 prehistoric Sicilians covering the Mesolithic to Bronze Age periods (10,700-4,100 yBP). We find that Early Mesolithic hunter-gatherers (HGs) from Sicily are a highly drifted lineage of the Early Holocene western European HGs, whereas Late Mesolithic HGs carry ∌20% ancestry related to northern and (south) eastern European HGs, indicating substantial gene flow. Early Neolithic farmers are genetically most similar to farmers from the Balkans and Greece, with only ∌7% of ancestry from local Mesolithic HGs. The genetic discontinuities during the Mesolithic and Early Neolithic match the changes in material culture and diet. Three outlying individuals dated to ∌8,000 yBP; however, suggest that hunter-gatherers interacted with incoming farmers at Grotta dell'Uzzo, resulting in a mixed economy and diet for a brief interlude at the Mesolithic-Neolithic transition.Funding. The Max Planck Society financed the genetic, isotopic, and radiocarbon analyses. S. Talamo has received funding from the European Research Council under the European Union’s Horizon 2020 Research and Innovation Program (grant agreement No. 803147 RESOLUTION, https://site.unibo.it/resolution-erc/en).Peer reviewe

    Palaeogenomics of Upper Palaeolithic to Neolithic European hunter-gatherers

    Get PDF
    Modern humans have populated Europe for more than 45,000 years. Our knowledge of the genetic relatedness and structure of ancient hunter-gatherers is however limited, owing to the scarceness and poor molecular preservation of human remains from that period. Here we analyse 356 ancient hunter-gatherer genomes, including new genomic data for 116 individuals from 14 countries in western and central Eurasia, spanning between 35,000 and 5,000 years ago. We identify a genetic ancestry profile in individuals associated with Upper Palaeolithic Gravettian assemblages from western Europe that is distinct from contemporaneous groups related to this archaeological culture in central and southern Europe, but resembles that of preceding individuals associated with the Aurignacian culture. This ancestry profile survived during the Last Glacial Maximum (25,000 to 19,000 years ago) in human populations from southwestern Europe associated with the Solutrean culture, and with the following Magdalenian culture that re-expanded northeastward after the Last Glacial Maximum. Conversely, we reveal a genetic turnover in southern Europe suggesting a local replacement of human groups around the time of the Last Glacial Maximum, accompanied by a north-to-south dispersal of populations associated with the Epigravettian culture. From at least 14,000 years ago, an ancestry related to this culture spread from the south across the rest of Europe, largely replacing the Magdalenian-associated gene pool. After a period of limited admixture that spanned the beginning of the Mesolithic, we find genetic interactions between western and eastern European hunter-gatherers, who were also characterized by marked differences in phenotypically relevant variants.Open access funding provided by Max Planck Society. This project has received funding by the European Research Council under the European Union’s Horizon 2020 research and innovation programme under grant agreements no. 803147-RESOLUTION (to S.T.), no. 771234-PALEoRIDER (to W.H.), no. 864358 (to K.M.), no. 724703 and no. 101019659 (to K.H.). K.H. is also supported by the Deutsche Forschungsgemeinschaft (DFG FOR 2237). E.A. has received funding from the Van de Kamp fonds. PACEA co-authors of this research benefited from the scientific framework of the University of Bordeaux’s IdEx Investments for the Future programme/GPR Human Past. A.G.-O. is supported by a Ramón y Cajal fellowship (RYC-2017-22558). L. Sineo, M.L. and D.C. have received funding from the Italian Ministry of University and Research (MUR) PRIN 2017 grants 20177PJ9XF and 20174BTC4R_002. H. Rougier received support from the College of Social and Behavioral Sciences of CSUN and the CSUN Competition for RSCA Awards. C.L.S. and T. Saupe received support from the European Union through the European Regional Development Fund (project no. 2014-2020.4.01.16-0030) and C.L.S. received support from the Estonian Research Council grant PUT (PRG243). S. Shnaider received support from the Russian Science Foundation (no. 19-78-10053).Peer reviewe

    Stable isotopes show Homo sapiens dispersed into cold steppes ~45,000 years ago at Ilsenhöhle in Ranis, Germany

    Get PDF
    The spread of Homo sapiens into new habitats across Eurasia ~45,000 years ago and the concurrent disappearance of Neanderthals represents a critical evolutionary turnover in our species' history. 'Transitional' technocomplexes, such as the Lincombian-Ranisian-Jerzmanowician (LRJ), characterize the European record during this period but their makers and evolutionary significance have long remained unclear. New evidence from Ilsenhöhle in Ranis, Germany, now provides a secure connection of the LRJ to H. sapiens remains dated to ~45,000 years ago, making it one of the earliest forays of our species to central Europe. Using many stable isotope records of climate produced from 16 serially sampled equid teeth spanning ~12,500 years of LRJ and Upper Palaeolithic human occupation at Ranis, we review the ability of early humans to adapt to different climate and habitat conditions. Results show that cold climates prevailed across LRJ occupations, with a temperature decrease culminating in a pronounced cold excursion at ~45,000-43,000 cal BP. Directly dated H. sapiens remains confirm that humans used the site even during this very cold phase. Together with recent evidence from the Initial Upper Palaeolithic, this demonstrates that humans operated in severe cold conditions during many distinct early dispersals into Europe and suggests pronounced adaptability. [Abstract copyright: © 2024. The Author(s).
    corecore