418 research outputs found

    SOLPS-ITER validation with TCV L-mode discharges editors-pick

    Get PDF
    This work presents a quantitative test of SOLPS-ITER simulations against tokamak a configuration variable (TCV) L-mode experiments. These simulations account for drifts, currents, kinetic neutrals, and carbon impurities providing the most complete edge transport simulations for TCV to date. The comparison is performed on nominally identical discharges carried out to assess the effectiveness of TCV's divertor baffles in the framework of the European Plasma Exhaust program and employs numerous edge diagnostics providing a detailed code-experiment benchmark for TCV. The simulations show a qualitative consistency, but the quantitative differences remain, which are assessed herein. It is found that, for a given separatrix density, the simulations most notably yield a colder, and denser, divertor state with a higher divertor neutral pressure than measured

    Communications Biophysics

    Get PDF
    Contains reports on five research projects.National Science Foundation (Grant G-16526)National Institutes of Health (Grant MH-04737-02

    Scrapie-Specific Pathology of Sheep Lymphoid Tissues

    Get PDF
    Transmissible spongiform encephalopathies (TSEs) or prion diseases often result in accumulation of disease-associated PrP (PrPd) in the lymphoreticular system (LRS), specifically in association with follicular dendritic cells (FDCs) and tingible body macrophages (TBMs) of secondary follicles. We studied the effects of sheep scrapie on lymphoid tissue in tonsils and lymph nodes by light and electron microscopy. FDCs of sheep were grouped according to morphology as immature, mature or regressing. Scrapie was associated with FDC dendrite hypertrophy and electron dense deposit or vesicles. PrPd was located using immunogold labelling at the plasmalemma of FDC dendrites and, infrequently, mature B cells. Abnormal electron dense deposits surrounding FDC dendrites were identified as immunoglobulins suggesting that excess immune complexes are retained and are indicative of an FDC dysfunction. Within scrapie-affected lymph nodes, macrophages outside the follicle and a proportion of germinal centre TBMs accumulated PrPd within endosomes and lysosomes. In addition, TBMs showed PrPd in association with the cell membrane, non-coated pits and vesicles, and also with discrete, large and random endoplasmic reticulum networks, which co-localised with ubiquitin. These observations suggest that PrPd is internalised via the caveolin-mediated pathway, and causes an abnormal disease-related alteration in endoplasmic reticulum structure. In contrast to current dogma, this study shows that sheep scrapie is associated with cytopathology of germinal centres, which we attribute to abnormal antigen complex trapping by FDCs and abnormal endocytic events in TBMs. The nature of the sub-cellular changes in FDCs and TBMs differs from those of scrapie infected neurones and glial cells suggesting that different PrPd/cell membrane interactions occur in different cell types

    Rab27a and Rab27b control different steps of the exosome secretion pathway

    Get PDF
    Exosomes are secreted membrane vesicles that share structural and biochemical characteristics with intraluminal vesicles of multivesicular endosomes (MVEs). Exosomes could be involved in intercellular communication and in the pathogenesis of infectious and degenerative diseases. The molecular mechanisms of exosome biogenesis and secretion are, however, poorly understood. Using an RNA interference (RNAi) screen, we identified five Rab GTPases that promote exosome secretion in HeLa cells. Among these, Rab27a and Rab27b were found to function in MVE docking at the plasma membrane. The size of MVEs was strongly increased by Rab27a silencing, whereas MVEs were redistributed towards the perinuclear region upon Rab27b silencing. Thus, the two Rab27 isoforms have different roles in the exosomal pathway. In addition, silencing two known Rab27 effectors, Slp4 (also known as SYTL4, synaptotagmin-like 4) and Slac2b (also known as EXPH5, exophilin 5), inhibited exosome secretion and phenocopied silencing of Rab27a and Rab27b, respectively. Our results therefore strengthen the link between MVEs and exosomes, and introduce ways of manipulating exosome secretion in vivo

    PrP Expression, PrPSc Accumulation and Innervation of Splenic Compartments in Sheep Experimentally Infected with Scrapie

    Get PDF
    BACKGROUND: In prion disease, the peripheral expression of PrP(C) is necessary for the transfer of infectivity to the central nervous system. The spleen is involved in neuroinvasion and neural dissemination in prion diseases but the nature of this involvement is not known. The present study undertook the investigation of the spatial relationship between sites of PrP(Sc) accumulation, localisation of nerve fibres and PrP(C) expression in the tissue compartments of the spleen of scrapie-inoculated and control sheep. METHODOLOGY/PRINCIPAL FINDINGS: Laser microdissection and quantitative PCR were used to determine PrP mRNA levels and results were compared with immunohistochemical protocols to distinguish PrP(C) and PrP(Sc) in tissue compartments of the spleen. In sheep experimentally infected with scrapie, the major sites of accumulation of PrP(Sc) in the spleen, namely the lymphoid nodules and the marginal zone, expressed low levels of PrP mRNA. Double immunohistochemical labelling for PrP(Sc) and the pan-nerve fibre marker, PGP, was used to evaluate the density of innervation of splenic tissue compartments and the intimacy of association between PrP(Sc) and nerves. Some nerve fibres were observed to accompany blood vessels into the PrP(Sc)-laden germinal centres. However, the close association between nerves and PrP(Sc) was most apparent in the marginal zone. Other sites of close association were adjacent to the wall of the central artery of PALS and the outer rim of germinal centres. CONCLUSIONS/SIGNIFICANCE: The findings suggest that the degree of PrP(Sc) accumulation does not depend on the expression level of PrP(C). Though several splenic compartments may contribute to neuroinvasion, the marginal zone may play a central role in being the compartment with most apparent association between nerves and PrP(Sc)

    Paracrine Diffusion of PrPC and Propagation of Prion Infectivity by Plasma Membrane-Derived Microvesicles

    Get PDF
    Cellular prion protein (PrPc) is a physiological constituent of eukaryotic cells. The cellular pathways underlying prions spread from the sites of prions infection/peripheral replication to the central nervous system are still not elucidated. Membrane-derived microvesicles (MVs) are submicron (0.1–1 µm) particles, that are released by cells during plasma membrane shedding processes. They are usually liberated from different cell types, mainly upon activation as well as apoptosis, in this case, one of their hallmarks is the exposure of phosphatidylserine in the outer leaflet of the membrane. MVs are also characterized by the presence of adhesion molecules, MHC I molecules, as well as of membrane antigens typical of their cell of origin. Evidence exists that MVs shedding provide vehicles to transfer molecules among cells, and that MVs are important modulators of cell-to-cell communication. In this study we therefore analyzed the potential role of membrane-derived MVs in the mechanism(s) of PrPC diffusion and prion infectivity transmission. We first identified PrPC in association with the lipid raft components Fyn, flotillin-2, GM1 and GM3 in MVs from plasma of healthy human donors. Similar findings were found in MVs from cell culture supernatants of murine neuronal cells. Furthermore we demonstrated that PrPSc is released from infected murine neuronal cells in association with plasma membrane-derived MVs and that PrPSc-bearing MVs are infectious both in vitro and in vivo. The data suggest that MVs may contribute both to the intercellular mechanism(s) of PrPC diffusion and signaling as well as to the process of prion spread and neuroinvasion

    New mechanism for Notch signaling to endothelium at a distance by Delta-like 4 incorporation into exosomes.

    Get PDF
    Notch signaling is an evolutionary conserved pathway that is mediated by cell-cell contact. It is involved in a variety of developmental processes and has an essential role in vascular development and angiogenesis. Delta-like 4 (Dll4) is a Notch ligand that is up-regulated during angiogenesis. It is expressed in endothelial cells and regulates the differentiation between tip cells and stalk cells of neovasculature. Here, we present evidence that Dll4 is incorporated into endothelial exosomes. It can also be incorporated into the exosomes of tumor cells that overexpress Dll4. These exosomes can transfer the Dll4 protein to other endothelial cells and incorporate it into their cell membrane, which results in an inhibition of Notch signaling and a loss of Notch receptor. Transfer of Dll4 was also shown in vivo from tumor cells to host endothelium. Addition of Dll4 exosomes confers a tip cell phenotype on the endothelial cell, which results in a high Dll4/Notch-receptor ratio, low Notch signaling, and filopodia formation. This was further evidenced by increased branching in a tube-formation assay and in vivo. This reversal in phenotype appears to enhance vessel formation and is a new form of signaling for Notch ligands that expands their signaling potential beyond cell-cell contact
    • …
    corecore