38 research outputs found

    Natural genetic variation in <i>Arabidopsis thaliana</i> defense metabolism genes modulates field fitness

    Get PDF
    Natural populations persist in complex environments, where biotic stressors, such as pathogen and insect communities, fluctuate temporally and spatially. These shifting biotic pressures generate heterogeneous selective forces that can maintain standing natural variation within a species. To directly test if genes containing causal variation for the Arabidopsis thaliana defensive compounds, glucosinolates (GSL) control field fitness and are therefore subject to natural selection, we conducted a multi-year field trial using lines that vary in only specific causal genes. Interestingly, we found that variation in these naturally polymorphic GSL genes affected fitness in each of our environments but the pattern fluctuated such that highly fit genotypes in one trial displayed lower fitness in another and that no GSL genotype or genotypes consistently out-performed the others. This was true both across locations and within the same location across years. These results indicate that environmental heterogeneity may contribute to the maintenance of GSL variation observed within Arabidopsis thaliana. DOI: http://dx.doi.org/10.7554/eLife.05604.00

    Doctor of Philosophy

    No full text
    dissertationTransposable elements, or mobile elements, are underappreciated DNA sequences that impact the evolution of the human genome. Transposable elements cause genomic rearrangements either through insertion events or by ectopic recombination of existing insertions. Some transposable elements can also mobilize cellular mRNAs and genomic regions to other places in the genome. These elements are so successful that almost half of the human genome is made of transposable elements, with retrotransposons composing ~ 1/3 of the genome. Retrotransposons are the only currently active class of transposable elements in humans, and mobilize via a copy and paste mechanism. While there has been extensive research in understanding existing retrotransposon insertions, it is unclear how frequently and when heritable retrotransposition occurs during human development. This dissertation aims to better understand the mechanisms and consequences of retrotransposition inheritance in humans. Chapter 1 reviews the active retrotransposon families in humans and ways of identifying them through next-generation sequencing techniques. The analyses presented in Chapter 2 identify novel, rare AluYb8/9 elements confirms that the capture-based method, ME-Scan, identifies population structure using these elements. ME-Scan also finds elements identified by short-read sequencing and Mobile Element Locator Tool (MELT). Next, Chapter 3 focuses on the first direct estimate of retrotransposition rates in humans using large, three-generation pedigrees. These results include determining any parental sex or age biases, the developmental iv timing of each retrotransposition event, and the subfamily and source element classification of each de novo mobile element insertion. The results of these studies help to push the understanding of polymorphic and de novo retrotransposition events in humans

    Plant-necrotroph co-transcriptome networks illuminate a metabolic battlefield

    Get PDF
    A central goal of studying host-pathogen interaction is to understand how host and pathogen manipulate each other to promote their own fitness in a pathosystem. Co-transcriptomic approaches can simultaneously analyze dual transcriptomes during infection and provide a systematic map of the cross-kingdom communication between two species. Here we used the Arabidopsis-B. cinerea pathosystem to test how plant host and fungal pathogen interact at the transcriptomic level. We assessed the impact of genetic diversity in pathogen and host by utilization of a collection of 96 isolates infection on Arabidopsis wild-type and two mutants with jasmonate or salicylic acid compromised immunities. We identified ten B. cinereagene co-expression networks (GCNs) that encode known or novel virulence mechanisms. Construction of a dual interaction network by combining four host- and ten pathogen-GCNs revealed potential connections between the fungal and plant GCNs. These co-transcriptome data shed lights on the potential mechanisms underlying host-pathogen interaction

    Data from: Plastic transcriptomes stabilize immunity to pathogen diversity: the jasmonic acid and salicylic acid networks within the Arabidopsis/Botrytis pathosystem

    No full text
    To respond to pathogen attack, selection and associated evolution has led to the creation of plant immune system that are a highly effective and inducible defense system. Central to this system are the plant defense hormones jasmonic acid (JA) and salicylic acid (SA) and crosstalk between the two, which may play an important role in defense responses to specific pathogens or even genotypes. Here, we used the Arabidopsis-B. cinerea pathosystem to test how the host's defense system functions against genetic variation in a pathogen. We measured defense-related phenotypes and transcriptomic responses in Arabidopsis wild-type Col-0 and JA- and SA-signaling mutants, coi1-1 and npr1-1, individually challenged with 96 diverse B. cinerea isolates. Those data showed genetic variation in the pathogen influences on all components within the plant defense system at the transcriptional level. We identified four gene co-expression networks and two vectors of defense variation triggered by genetic variation in B. cinerea. This showed that the JA and SA signaling pathways functioned to constrain/canalize the range of virulence in the pathogen population, but the underlying transcriptomic response was highly plastic. These data showed that plants utilize major defense hormone pathways to buffer disease resistance, but not the metabolic or transcriptional responses to genetic variation within a pathogen
    corecore