92 research outputs found

    Soluble Salts Quantitative Characterization and Thermodynamic Modeling on Roman Bricks to Assess the Origin of Their Formation

    Get PDF
    The environmental weathering and the formation of efflorescences on the brick walls are studied at the “Casa di Diana” Mithraeum at Ostia Antica archaeological site. Previous studies on subsoil, bedrock, hydrological systems and environmental conditions, and new ion chromatography analysis combined with ECOS-RUNSALT and Medusa-Hydra thermodynamic modelling software, had allowed us to identify the subsoil contamination related to soluble salts. The atmospheric acidic gases, CO2 and SO2, are determined as the main salt weathering species. A dry deposition after a subsequent hydration action from the shallow freshwater aquifer that reaches up to 1 m on the walls is identified as the mechanism of salt formation. An evaluation of potential sources such as the nearby Fiumicino airport, CO2-rich gases inputs from fumaroles and CO2 inputs was also debated. The risk level of contamination the surfaces of the materials should be considered mildly/very polluted with a medium/high risk of hygroscopic moisture due to the high concentration of sulphates.This work has been supported by the DEMORA (Grant No. PID2020-113391GB-I00) projects funded by the Spanish Agency for Research AEI (MICINN/FEDER-UE)

    Distinguishing the Mélange-forming processes in subduction-accretion complexes: constraints from the Anisotropy of Magnetic Susceptibility (AMS).

    Get PDF
    The strong morphological similitude of the block-in-matrix fabric of chaotic rock units (mélanges and broken formations) makes problematic the recognition of their primary forming-processes. We present results of the comparison between magnetic fabric and mesoscale structural investigations of non-metamorphic tectonic, sedimentary, and polygenetic mélanges in the exhumed Late Cretaceous to early Eocene Ligurian accretionary complex and overlying wedge-top basin succession in the Northern Apennines (northwest Italy). Our findings show that the magnetic fabric reveals diagnostic configurations of principal anisotropy of magnetic susceptibility (AMS) axes orientation that are well comparable with the mesoscale block-in-matrix fabric of mélanges formed by different processes. Broken formations and tectonic mélanges show prolate and neutral-to-oblate ellipsoids, respectively, with magnetic fabric elements being consistent with those of the mesoscale anisotropic “structurally ordered” block-in-matrix fabric. Sedimentary mélanges show an oblate ellipsoid with a clear sedimentary magnetic fabric related to downslope gravitational emplacement. Polygenetic mélanges show the occurrence of a cumulative depositional and tectonic magnetic fabric. The comparison of field and laboratory investigations validate the analysis of magnetic features as a diagnostic tool suitable to analytically distinguish the contribution of different mélange forming-processes and their mutual superposition, and to better understand the geodynamic evolution of subduction-accretion complexes

    Time-resolved prompt-gamma activation analysis at spallation neutron sources and applications to cultural heritage, security, and radiation protection

    Get PDF
    Abstract The present and future developments of time-resolved prompt-gamma activation analysis (T-PGAA) at pulsed neutron sources is discussed in the framework of the successful history of neutron-activation techniques. A brief description of the state of the art and the most important user facilities using standard prompt-gamma activation analysis (PGAA) is provided. Then, we discuss the challenges and the opportunities for T-PGAA at pulsed neutron sources, and the potential impact for applications to cultural heritage, radiation protection, and security. We notice some inversions of trend needed for the further development of T-PGAA with epithermal and fast neutrons, such as the possibility to use fast and high-efficiency Îł-ray scintillators with lower energy resolution (compared to usual high-purity germanium detectors) when the signal from neutron capture resonance is selected. We also suggest how detection systems often used in other fields, such as medical physics, can be of interest and inspiration also in the case of neutron-based investigations. Finally, we present new data of T-PGAA measurements on VESUVIO using neutron energies up to the keV using the scintillators available on the instrument, for samples of gold (of interest in cultural heritage), cadmium (for environmental safety), and tantalum (a material used in biomedical implants)

    SiO2 nanoparticles as new repairing treatments toward the Pietraforte sandstone in Florence renaissance buildings

    Get PDF
    In this work, the consolidation efficiency of SiO2 nanoparticles (synthesized in the Chemistry laboratories at the Tor Vergata University of Roma) was tested on Pietraforte sandstone surfaces belonging to the bell tower of San Lorenzo (Florence, Italy) and was fully investigated. Nanoparticles (synthesized in large-scale mass production) have been characterized by XRD—X-Ray Diffraction; Raman and FTIR—Fourier Transform Infrared spectroscopy; SEM—Scanning Electron Microscopy; while the Pietraforte sandstone morphology was examined by Porosimetry, capillary absorption test, surface hardness test, drilling resistance and tensile strength. The colorimetric measurements were also performed to characterize the optical modification exhibited by Pietraforte sandstones, especially after the SiO2 treatments. Our results show that applying to the Pietraforte, the new consolidating agent based on SiO2 nanoparticles, has several advantages, as they are more resistant to perforation, wear, and abrasion even long range (for long times of exposure and consolidating exercise against Florentine sandstone), compared to the CaCO3 nanoparticles (tested in our previous paper), which instead show excellent performance but only close to their first application. This means that over time, their resistance to drilling decreases, they wear much more easily (compared to SiO2 -treated sandstone), and tend to exhibit quite a significant surface abrasion phenomena. The experimental results highlight that the SiO2 consolidation efficiency on this kind of Florentine Pietraforte sandstone (having low porosity and a specific calcitic texture) seems to be higher in terms of water penetration protection, superficial cohesion forces, and an increase in surface resistance. Comparing the performance of SiO2 nanoparticles with commercial consolidants in solvents such as Estel 1000 (tested here), we demonstrate that: (A) the restorative effects are obtained with a consolidation time over one week, significantly shorter when compared to the times of Estel 1000, exceeding 21 days; (B) SiO2 nanoparticles perform better than Estel 1000 in terms of cohesion forces, also ensuring excellent preservation of the optical and color properties of the parent rock (without altering it after application)

    Expression of high- and low-affinity epidermal growth factor receptors in human hepatoma cell lines

    Get PDF
    AbstractData are presented from a comparative research on expression of epidermal growth factor (EGF) receptors and response to EGF of six independently established cell lines derived from human hepatoma. These lines differ in terms of the degree of differentiation, presence of hepatitis B virus (HBV) DNA copies in integrated form and expression of HBV genes. Our results indicate differential expression of membrane EGF receptors and differential response to EGF under serum- and hormone-free culture conditions. Furthermore, a significant difference in affinity could be detected between EGF receptors of the two highly dedifferentiated cell lines (HA22T/VGH and Li7A) whose replication is inhibited by EGF concentrations capable of stimulating more differentiated phenotypes

    In-Situ Anaerobic Heating of Human Bones Probed by Neutron Diffraction

    Get PDF
    The first neutron diffraction study of in-situ anaerobic burning of human bones is reported, aiming at an interpretation of heat-induced changes in bone, which were previously detected by vibrational spectroscopy, including inelastic neutron scattering techniques. Structural and crystallinity variations were monitored in samples of the human femur and tibia, as well as a reference hydroxyapatite, upon heating under anaerobic conditions. Information on the structural reorganization of the bone matrix as a function of temperature, from room temperature to 1000 °C, was achieved. Noticeable crystallographic and domain size variations, together with O–H bond lengths and background variations, were detected. Above 700 °C, the inorganic bone matrix became highly symmetric, devoid of carbonates and organic constituents, while for the lower temperature range (<700 °C), a considerably lower crystallinity was observed. The present pilot study is expected to contribute to a better understanding of the heat-prompted changes in bone, which can be taken as biomarkers of the burning temperature. This information is paramount for bone analysis in forensic science as well as in archeology and may also have useful applications in other biomaterial studies.info:eu-repo/semantics/publishedVersio
    • …
    corecore