53 research outputs found

    Mechanical properties of the compass depressors of the sea-urchin Paracentrotus lividus (Echinodermata, Echinoidea) and the effects of enzymes, neurotransmitters and synthetic tensilin-like protein

    Get PDF
    The compass depressors (CDs) of the sea-urchin lantern are ligaments consisting mainly of discontinuous collagen fibrils associated with a small population of myocytes. They are mutable collagenous structures, which can change their mechanical properties rapidly and reversibly under nervous control. The aims of this investigation were to characterise the baseline (i.e. unmanipulated) static mechanical properties of the CDs of Paracentrotus lividus by means of creep tests and incremental force-extension tests, and to determine the effects on their mechanical behaviour of a range of agents. Under constant load the CDs exhibited a three-phase creep curve, the mean coefficient of viscosity being 561±365 MPa.s. The stress-strain curve showed toe, linear and yield regions; the mean strain at the toe-linear inflection was 0.86±0.61; the mean Young's modulus was 18.62±10.30 MPa; and the mean tensile strength was 8.14±5.73 MPa. Hyaluronidase from Streptomyces hyalurolyticus had no effect on creep behaviour, whilst chondroitinase ABC prolonged primary creep but had no effect on secondary creep or on any force-extension parameters; it thus appears that neither hyaluronic acid nor sulphated glycosaminoglycans have an interfibrillar load transfer function in the CD. Acetylcholine, the muscarinic agonists arecoline and methacholine, and the nicotinic agonists nicotine and 1-[1-(3,4-dimethyl-phenyl)-ethyl]-piperazine produced an abrupt increase in CD viscosity; the CDs were not differentially sensitive to muscarinic or nicotinic agonists. CDs showed either no, or no consistent, response to adrenaline, L-glutamic acid, 5-hydroxytryptamine and γ-aminobutyric acid. Synthetic echinoid tensilin-like protein had a weak and inconsistent stiffening effect, indicating that, in contrast to holothurian tensilins, the echinoid molecule may not be involved in the regulation of collagenous tissue tensility. We compare in detail the mechanical behaviour of the CD with that of mammalian tendon and highlight its potential as a model system for investigating poorly understood aspects of the ontogeny and phylogeny of vertebrate collagenous tissues.(undefined)info:eu-repo/semantics/publishedVersio

    The enigma of in vivo oxidative stress assessment: isoprostanes as an emerging target

    Get PDF
    Oxidative stress is believed to be one of the major factors behind several acute and chronic diseases, and may also be associated with ageing. Excess formation of free radicals in miscellaneous body environment may originate from endogenous response to cell injury, but also from exposure to a number of exogenous toxins. When the antioxidant defence system is overwhelmed, this leads to cell damage. However, the measurement of free radicals or their endproducts is tricky, since these compounds are reactive and short lived, and have diverse characteristics. Specific evidence for the involvement of free radicals in pathological situations has been difficult to obtain, partly owing to shortcomings in earlier described methods for the measurement of oxidative stress. Isoprostanes, which are prostaglandin-like bioactive compounds synthesized in vivo from oxidation of arachidonic acid, independently of cyclooxygenases, are involved in many human diseases, and their measurement therefore offers a way to assess oxidative stress. Elevated levels of F2-isoprostanes have also been seen in the normal human pregnancy, but their physiological role has not yet been defined. Large amounts of bioactive F2-isoprostanes are excreted in the urine in normal basal situations, with a wide interindividual variation. Their exact role in the regulation of normal physiological functions, however, needs to be explored further. Current understanding suggests that measurement of F2-isoprostanes in body fluids provides a reliable analytical tool to study oxidative stress-related diseases and experimental inflammatory conditions, and also in the evaluation of various dietary antioxidants, as well as drugs with radical-scavenging properties. However, assessment of isoprostanes in plasma or urine does not necessarily reflect any specific tissue damage, nor does it provide information on the oxidation of lipids other than arachidonic acid

    Oxidative Stress in Neurodegenerative Diseases

    Get PDF

    Coenzyme Q10 dose-escalation study in hemodialysis patients: safety, tolerability, and effect on oxidative stress

    Get PDF
    BACKGROUND: Coenzyme Q(10) (CoQ(10)) supplementation improves mitochondrial coupling of respiration to oxidative phosphorylation, decreases superoxide production in endothelial cells, and may improve functional cardiac capacity in patients with congestive heart failure. There are no studies evaluating the safety, tolerability and efficacy of varying doses of CoQ(10) in chronic hemodialysis patients, a population subject to increased oxidative stress. METHODS: We performed a dose escalation study to test the hypothesis that CoQ(10) therapy is safe, well-tolerated, and improves biomarkers of oxidative stress in patients receiving hemodialysis therapy. Plasma concentrations of F(2)-isoprostanes and isofurans were measured to assess systemic oxidative stress and plasma CoQ(10) concentrations were measured to determine dose, concentration and response relationships. RESULTS: Fifteen of the 20 subjects completed the entire dose escalation sequence. Mean CoQ(10) levels increased in a linear fashion from 704 ± 286 ng/mL at baseline to 4033 ± 1637 ng/mL, and plasma isofuran concentrations decreased from 141 ± 67.5 pg/mL at baseline to 72.2 ± 37.5 pg/mL at the completion of the study (P = 0.003 vs. baseline and P < 0.001 for the effect of dose escalation on isofurans). Plasma F(2)-isoprostane concentrations did not change during the study. CONCLUSIONS: CoQ(10) supplementation at doses as high as 1800 mg per day was safe in all subjects and well-tolerated in most. Short-term daily CoQ(10) supplementation decreased plasma isofuran concentrations in a dose dependent manner. CoQ(10) supplementation may improve mitochondrial function and decrease oxidative stress in patients receiving hemodialysis. TRIAL REGISTRATION: This clinical trial was registered on clinicaltrials.gov [NCT00908297] on May 21, 2009
    corecore