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Abstract Although multiple, complex molecular studies

have been done for understanding the development and

progression of pulmonary hypertension (PAH), little is

known about the metabolic heterogeneity of PAH. Using a

combination of high-throughput liquid-and-gas-chromato-

graphy-based mass spectrometry, we found bile acid

metabolites, which are normally product derivatives of the

liver and gallbladder, were highly increased in the PAH

lung. Microarray showed that the gene encoding cyto-

chrome P450 7B1 (CYP7B1), an isozyme for bile acid

synthesis, was highly expressed in the PAH lung compared

with the control. CYP7B1 protein was found to be pri-

marily localized on pulmonary vascular endothelial cells

suggesting de novo bile acid synthesis may be involved in

the development of PAH. Here, by profiling the meta-

bolomic heterogeneity of the PAH lung, we reveal a newly

discovered pathogenesis mechanism of PAH.

Keywords Bile acid pathway � Pulmonary arterial

hypertension � Lung

1 Introduction

Pulmonary arterial hypertension (PAH) is a severe vascular

disease characterized by persistent precapillary pulmonary

hypertension (PH) (Stacher et al. 2012; International PPHC

et al. 2000; Zhao et al. 2002; Fujiwara et al. 2008; Nasim

et al. 2011; Olschewski 2010; Bogaard et al. 2012; MMea

and 2013), which can be either be idiopathic (sporadic-

90 %, familial-10 %). PAH can also be a complication

associated with other conditions such as connective tissue

disease, congenital heart disease, anorexigen use (dexfen-

fluramine), portal hypertension, and human immunodefi-

ciency virus (Stacher et al. 2012; International PPHC, Lane

KB, Machado RD, Pauciulo MW, Thomson JR, et al. 2000;

MMea et al. 2013). Evidence in the literature suggests that

metabolic pathway abnormalities characterize and may

play a significant role in the development and progression

of PAH (Fessel et al. 2012). For example, pulmonary

arterial endothelial cells (PAECs) in PAH share similar

hyperproliferative characteristics as malignant tumor

transformation that is accompanied by significant meta-

bolic shifts to support anabolic growth and energy metab-

olism (Xu et al. 2005; Chen et al. 2007). Moreover, it has

been shown that mitochondrial oxidative phosphorylation

with glucose uptake and utilization occurs in PAEC

development. Significant elevation of hemoglobin has been

found in the PAH sample group without a history of
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diabetes or any other obvious metabolic diseases, indicat-

ing the impairment of whole-body glucose homeostasis in

PAH (Pugh et al. 2011; Hansmann et al. 2007; Archer et al.

2010). Additionally, vascular changes under chronic hyp-

oxic condition has been directly linked to an imbalance

between glycolysis, glucose oxidation, and fatty acid oxi-

dation (Sutendra et al. 2010), while in vitro pulmonary

arterial endothelial cell culture with disruption of the Bone

Morphogenetic Protein Receptor II (BMPRII) gene showed

significant metabolomic changes (Fessel et al. 2012). Our

recent work showed that disrupted glycolysis, increased

TCA cycle, and fatty acid metabolites with altered oxida-

tion pathways exited in the human PAH lung, indicating

that PAH has specific metabolic pathways contributing to

abnormal ATP synthesis for the vascular remodeling pro-

cess in pulmonary hypertension (Zhao et al. 2014). Col-

lectively, in vitro, human and animal models suggest that

multiple metabolic pathways are reprogrammed during

PAH vascular remolding and that metabolic heterogeneity

may play an important role in both ATP energy supply and

the molecular pathogenesis of pulmonary hypertension.

Here, we provide direct evidence of a novel increase in bile

acid metabolites in PAH lung tissue associated with the

elevated expression of bile acid synthesis related tran-

scripts, indicating de novo synthesis of bile acids may

characterize and contribute to the pathogenesis of PAH.

2 Materials and methods

Global biochemical profiles were determined in human

lung tissue and compared across 8 normal (47 ± 15 years

of age, 4 females) and 8 pulmonary arterial hypertension

patients (40 ± 12 years of age, 5 females). Eligibility cri-

teria included end stage PAH patients who went through

lung transplantation. Lung samples were obtained from the

recipient lung at the time of lung transplantation. Control

lung samples were obtained from normal tissue of cancer

patients undergoing surgery (lobectomy). Biospecimens

and associated clinical data related to the study were col-

lected with written consent from the University Health

Network and approved by the Internal Review Board.

Unbiased metabolomic profiling using liquid/gas chroma-

tography coupled to mass spectrometry (LC/GC–MS) was

performed as described (Reitman et al. 2011; Evans et al.

2009). The detail procedure of metabolic analysis has been

documented in the Supplement data.

2.1 Transcriptomic analysis

mRNA samples from the normal (n = 8) and native PAH

lungs (n = 8) were isolated as described (Zhao et al. 2014).

Bile acid related profiles were compared between a control

group and samples with idiopathic pulmonary arterial

hypertension. Briefly, the total RNA analysis in lung tis-

sues was performed using Trizol extraction according to

the manufacturer’s instructions. Biotinylated cRNA was

prepared according to the standard Affymetrix protocol

(Expression Analysis). Following fragmentation, cRNA

were hybridized on GeneChip Genome Array. GeneChips

were scanned using the HuGene-1_0-st-v1 GeneArray

Scanner G2500A. The data were analyzed with Partek

Genomics Suite 6.6 using the Affymetrix default analysis

settings and global scaling as the normalization method.

The value definition was set up using Partek Genomics

Suite 6.6. Significantly changed genes were determined by

t test with a false discovery rate of two fold. The data base

has been submitted to NCBI/GEO and has been approved

and assigned a GEO accession number GSE53408.

2.2 Immunoblotting

Protein concentrations were determined using the BCA

protein assay (Pierce, IL, USA). Equal amounts of the pro-

tein lysates were separated by SDS-PAGE and transferred

onto nitrocellulose membranes. The membranes were incu-

bated for overnight at 4 �C with the following antibodies

from AbcamR: anti-CYP7B1(1:1,000). After wash with

TBS-Tween, the blots were incubated for 60 min at room

temperature with horseradish peroxidase-conjugated anti-

bodies, respectively: anti-rabbit antibody (1:15,000; Sigma-

Aldrich, St. Louis, MO). Signals from immunoreactive

bands were visualized by fluorography using an ECL reagent

(Pierce). The intensity of individual bands in immunoblots

were quantified using the NIH Image program.

2.3 Immunohistochemistry

The sections of both PAH and normal lung tissue were

fixed for 4 h at room temperature with PBS made of 4 %

formaldehyde, permeabilized for 30 min in Triton X-100

(0.5 % in PBS), and incubated with 5 % nonfat skim milk

in PBS for 90 min. Sections were incubated for 180 min at

room temperature with antibodies for anti-CYP7B1

(1:1,000). The sections were then incubated with biotin-

ylated secondary antibody and visualized with DAB.

Stained cells and sections were visualized with the Zeiss

LSM 510 confocal microscope.

b Fig. 1 MS/MS fragmentation spectrum of taurocholate in control and

PAH lung. Top panel shows a representative negative ion, selected

ion chromatogram (SIC) for taurocholate (m/z 514.3) in normal (NL)

and pulmonary hypertension (PAH) lung tissue. Taurocholate com-

pound identification relied on confirmed experimental MS/MS

fragmentation spectrum matched to the authenticated taurocholate

standard, run separately (bottom panel). Limited peak detection was

observed in NL samples
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3 Results and discussion

We explored and characterized the metabolomic signature

of pulmonary hypertension (PAH) to enhance our under-

standing of disease progression. Using untargeted meta-

bolic profiling, we found that PAH lung (n = 8) possessed

significantly higher levels of multiple bile acid metabolites,

including the primary bile acids taurocholate (Fig. 1),

glycocholate (Fig. 2), taurochenodeoxycholate, and gly-

cochenodeoxycholate (Fig. 3). Bile acids are normally

synthesized in the liver and gallbladder from cholesterol by

7-alpha-hydroxylase, also called cytochrome P450

(CYP7A1), as a rate-limiting enzyme in the synthesis of

bile acid via the classic pathway (Nishimoto et al. 1993;

Cohen et al. 1992; Crestani et al. 1993; Wang and Chiang

1994). Although the presence of bile acids in lung tissue

may partially reflect reflux in these patient (D’Ovidio et al.

2005; Blondeau et al. 2009), microarray analysis

surprisingly revealed that the gene encoding cytochrome

P450 B1 (CYP7B1), but not CYP7A1, had a significantly

higher expression in PAH lung (Fig. 4a). This finding was

also confirmed by Real time RTPCR. Further molecular

b Fig. 2 MS/MS fragmentation spectrum of glycocholate in control

and PAH lung. Representative negative ion is selected ion chromato-

gram (SIC) for glycocholate (m/z 464.4) in normal (NL) and

pulmonary hypertension (PAH) lung tissue (top panel). Glycocholate

compound identification relied on confirmed experimental MS/MS

fragmentation spectrum matched to the authenticated glycocholate

standard, run separately (bottom panel)
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Fig. 4 a Microarray data showed that the gene encoding cytochrome

P450, family 7, subfamily B, polypeptide 1 (Oxysterol 7a-hydrox-

ylase) was significantly highly expressed in PAH lung.

(p = 0.000187299). b Western blot analysis of CYP7B1 expression

in normal and PAH lungs. Lung lysate was loaded and immunoblotted

with antibody against CYP7B1 and GAPDH (loading control).

Consistent with a significant increase of CYP7B1 gene expression

in PAH, the enzyme protein for CYP7B1 (37KD) was significantly

increased in PAH lungs compared with NL lungs. Densitometric

analysis of CYP7B1 was normalized to the intensity of the respective

GAPDH band. Data are expressed as mean ± SD (n = 4). *p \ 0.05

versus NL. c CYP7B1 positive immunostaining in newly formed

small blood vessels (arrows) in the plexiform lesions of occluded

pulmonary small vessel in PAH lung. Representative micrographs of

immunostaining of PAH lung sections are shown with anti–CYP7B1

in the pulmonary vascular endothelial cells. (ratio 1:200)
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analysis using Western blot showed that the expression of

CYP7B1enzyme was higher in PAH lung (Fig. 4b). These

results suggest that increased bile acid metabolites may not

solely be due to reflux from the esophagus (D’Ovidio et al.

2005; Blondeau et al. 2009) but come from the lung itself.

Thus, PAH lung tissue may have the capacity for de novo

synthesis of bile acids. Notably, increased bile acids

metabolites could potentially serve as biomarkers for dis-

ease progression. By applying immunohistochemistry,

CYP7B1positive immunostaining was found in pulmonary

vascular endothelial cells, specifically in newly formed

vascular endothelial cells in plexiform lesions of occluded

pulmonary arteries (Fig. 4c), suggesting that CYP7B1may

also be involved in the vasculogenesis during the vascular

remodeling process of PAH (Fig. 5). This hypothesis needs

to be further tested by additional functional analyses. In

summary, we have shown direct evidence that a de novo

synthesis of bile acid may be involved in pathogenesis of

PAH, suggesting that bile acids in lavage fluid may serve as

ideal biomarkers for the diagnosis and prognosis of PAH.

Open Access This article is distributed under the terms of the

Creative Commons Attribution License which permits any use, dis-

tribution, and reproduction in any medium, provided the original

author(s) and the source are credited.
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