11 research outputs found

    State of the Art Therapy of Advanced Hodgkin Lymphoma

    Get PDF

    Switchable chiral transport in charge-ordered kagome metal CsV3Sb5

    Get PDF
    When electric conductors differ from their mirror image, unusual chiral transport coefficients appear that are forbidden in achiral metals, such as a non-linear electric response known as electronic magnetochiral anisotropy (eMChA)1–6 . Although chiral transport signatures are allowed by symmetry in many conductors without a centre of inversion, they reach appreciable levels only in rare cases in which an exceptionally strong chiral coupling to the itinerant electrons is present. So far, observations of chiral transport have been limited to materials in which the atomic positions strongly break mirror symmetries. Here, we report chiral transport in the centrosymmetric layered kagome metal CsV3Sb5 observed via second-harmonic generation under an in-plane magnetic field. The eMChA signal becomes significant only at temperatures below T′≈ 35 K, deep within the charge-ordered state of CsV 3Sb5 (TCDW ≈ 94 K). This temperature dependence reveals a direct correspondence between electronic chirality, unidirectional charge order7 and spontaneous time-reversal symmetry breaking due to putative orbital loop currents8–10 . We show that the chirality is set by the out-of-plane field component and that a transition from left- to right-handed transport can be induced by changing the field sign. CsV3Sb5 is the first material in which strong chiral transport can be controlled and switched by small magnetic field changes, in stark contrast to structurally chiral materials, which is a prerequisite for applications in chiral electronics.This work was funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (MiTopMat, grant agreement no. 715730, and PARATOP, grant agreement no. 757867). This project received funding by the Swiss National Science Foundation (grant no. PP00P2_176789). M.G.V., I.E. and M.G.-A. acknowledge the Spanish Ministerio de Ciencia e Innovacion (grant PID2019-109905GB-C21). M.G.V., C.F. and T.N. acknowledge support from FOR 5249 (QUAST) lead by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation). This work has been supported in part by Basque Government grant IT979-16. This work was also supported by the European Research Council Advanced Grant (no. 742068) ‘TOPMAT’, the Deutsche Forschungsgemeinschaft (Project-ID no. 247310070) ‘SFB 1143’ and the DFG through the Würzburg–Dresden Cluster of Excellence on Complexity and Topology in Quantum Matter ct.qmat (EXC 2147, Project-ID no. 390858490). Open access funding provided by Max Planck Society

    [Photograph 2012.201.B1321.0683]

    No full text
    Photograph used for a story in the Oklahoma Times newspaper. Caption: "PAINTING THE MURAL in the Will Rogers cafeteria at OU for the second time is Mary Scofield, artist from Wichita Falls, Texas.
    corecore