223 research outputs found
Associations between Common Variants in Iron-Related Genes with Haematological Traits in Populations of African Ancestry.
BACKGROUND: Large genome-wide association (GWA) studies of European ancestry individuals have identified multiple genetic variants influencing iron status. Studies on the generalizability of these associations to African ancestry populations have been limited. These studies are important given interethnic differences in iron status and the disproportionate burden of iron deficiency among African ancestry populations. METHODS: We tested the associations of 20 previously identified iron status-associated single nucleotide polymorphisms (SNPs) in 628 Kenyans, 609 Tanzanians, 608 South Africans and 228 African Americans. In each study, we examined the associations present between 20 SNPs with ferritin and haemoglobin, adjusting for age, sex and CRP levels. RESULTS: In the meta analysis including all 4 African ancestry cohorts, we replicated previously reported associations with lowered haemoglobin concentrations for rs2413450 (β = -0.19, P = 0.02) and rs4820268 (β = -0.16, P = 0.04) in TMPRSS6. An association with increased ferritin concentrations was also confirmed for rs1867504 in TF (β = 1.04, P = <0.0001) in the meta analysis including the African cohorts only. CONCLUSIONS: In all meta analyses, we only replicated 4 of the 20 single nucleotide polymorphisms reported to be associated with iron status in large GWA studies of European ancestry individuals. While there is now evidence for the associations of a number of genetic variants with iron status in both European and African ancestry populations, the considerable lack of concordance highlights the importance of continued ancestry-specific studies to elucidate the genetic underpinnings of iron status in ethnically diverse populations
Systematically missing confounders in individual participant data meta-analysis of observational cohort studies.
One difficulty in performing meta-analyses of observational cohort studies is that the availability of confounders may vary between cohorts, so that some cohorts provide fully adjusted analyses while others only provide partially adjusted analyses. Commonly, analyses of the association between an exposure and disease either are restricted to cohorts with full confounder information, or use all cohorts but do not fully adjust for confounding. We propose using a bivariate random-effects meta-analysis model to use information from all available cohorts while still adjusting for all the potential confounders. Our method uses both the fully adjusted and the partially adjusted estimated effects in the cohorts with full confounder information, together with an estimate of their within-cohort correlation. The method is applied to estimate the association between fibrinogen level and coronary heart disease incidence using data from 154,012 participants in 31 cohort
Upstream transcription factor 1 (USF1) in risk of type 2 diabetes:Association study in 2000 Dutch Caucasians
Type 2 diabetes shares substantial genetic and phenotypic overlap with familial combined hyperlipidemia. Upstream stimulatory factor 1 (USF7), a well-established susceptibility gene for familial combined hyperlipidemia, is postulated to be such a shared genetic determinant. We evaluated two established variants in familial combined hyperlipidemia (rs2073658 and rs3737787) for association with type 2 diabetes in two Dutch case-control samples (N=2011). The first case-control sample comprised 501 subjects with type 2 diabetes from the Breda cohort and 920 healthy blood bank donors of Dutch Caucasian origin. The second case-control sample included 211 subjects with type 2 diabetes, and 379 normoglycemic controls. SNP rs2073658 and SNP rs3737787 were in perfect linkage disequilibrium. In the first case-control sample, prevalence of the major allele was higher in patients than in controls (75% versus 71%, OR=1.25, p=0.018). A similar effect-size and -direction was observed in the second case-control sample (76% versus 72%, OR=1.22, p=0.16). A combined analysis strengthened the evidence for association (OR=1.23, p=0.006). Notably, the increased risk for type 2 diabetes could be ascribed to the major allele, and its high frequency translated to a substantial population attributable risk of 14.5%. In conclusion, the major allele of rs2073658 in the USF1 gene is associated with a modestly increased risk to develop type 2 diabetes in Dutch Caucasians, with considerable impact at the population level. (c) 2008 Elsevier Inc. All rights reserved
Activating transcription factor 6 polymorphisms and haplotypes are associated with impaired glucose homeostasis and type 2 diabetes in dutch Caucasians
Context: Activating transcription factor 6 (ATF6) is critical for initiation and full activation of the unfolded protein response. An association between genetic variation in ATF6 and type 2 diabetes (DM2) was recently reported in Pima Indians. Objectives: To investigate the broader significance of this association for DM2, replication studies in distinct ethic populations are required. We investigated ATF6 for its association with DM2 in Dutch Caucasians. Design/Setting: A genetic association study was conducted at an academic research laboratory. Study Participants: Two independent Dutch cohorts were studied. Cohort 1 (n = 154) was used to evaluate genetic variation in the ATF6 gene in relation to glucose homeostasis in the general population. Cohort 2 (n = 798) consisted of patients with DM2, impaired glucose tolerance, impaired fasting glucose, and normoglycemic control subjects, and was used to investigate ATF6 polymorphisms for their contribution to disturbed glucose homeostasis and DM2. Main Outcome Measures: There were 16 tag single nucleotide polymorphisms genotyped in all subjects of both cohorts. Those single nucleotide polymorphisms included three nonsynonymous coding variants and captured all common allelic variation of ATF6. Results: Our data show that common ATF6 variants are associated with elevated glucose levels in the general population (cohort 1, P = 0.005-0.05). Furthermore, the majority of these variants, and haplotypes thereof, were significantly associated with impaired fasting glucose, impaired glucose tolerance, and DM2 ( cohort 2, P = 0.006-0.05). Associated variants differ from those identified in Pima Indians. Conclusions: Our results strengthen the evidence that one or more variants in ATF6 are associated with disturbed glucose homeostasis and DM2
A Protein Diet Score, Including Plant and Animal Protein, Investigating the Association with HbA1c and eGFR-The PREVIEW Project
Higher-protein diets have been advocated for body-weight regulation for the past few decades. However, the potential health risks of these diets are still uncertain. We aimed to develop a protein score based on the quantity and source of protein, and to examine the association of the score with glycated haemoglobin (HbA1c) and estimated glomerular filtration rate (eGFR). Analyses were based on three population studies included in the PREVIEW project (PREVention of diabetes through lifestyle Intervention and population studies in Europe and around the World): NQplus, Lifelines, and the Young Finns Study. Cross-sectional data from food-frequency questionnaires (n = 76,777 subjects) were used to develop a protein score consisting of two components: 1) percentage of energy from total protein, and 2) plant to animal protein ratio. An inverse association between protein score and HbA1c (slope -0.02 +/- 0.01 mmol/mol, p < 0.001) was seen in Lifelines. We found a positive association between the protein score and eGFR in Lifelines (slope 0.17 +/- 0.02 mL/min/1.73 m(2), p < 0.0001). Protein scoring might be a useful tool to assess both the effect of quantity and source of protein on health parameters. Further studies are needed to validate this newly developed protein score
Dietary Protein Intake and Incidence of Type 2 Diabetes in Europe: The EPIC-INTERACT Case-Cohort Study
OBJECTIVEThe long-term association between dietary protein and type 2 diabetes incidence is uncertain. We aimed to investigate the association between total, animal, and plant protein intake and the incidence of type 2 diabetes.RESEARCH DESIGN AND METHODSThe prospective European Prospective Investigation into Cancer and Nutrition (EPIC)-InterAct case-cohort study consists of 12,403 incident type 2 diabetes cases and a stratified subcohort of 16,154 individuals from eight European countries, with an average follow-up time of 12.0 years. Pooled country-specific hazard ratios (HRs) and 95% CI of prentice-weighted Cox regression analyses were used to estimate type 2 diabetes incidence according to protein intake.RESULTSAfter adjustment for important diabetes risk factors and dietary factors, the incidence of type 2 diabetes was higher in those with high intake of total protein (per 10 g: HR 1.06 [95% CI 1.02-1.09], Ptrend 30 kg/m(2) (per 10 g animal protein: 1.19 [1.09-1.32]), and nonsignificant in men. Plant protein intake was not associated with type 2 diabetes (per 10 g: 1.04 [0.93-1.16], Ptrend = 0.098).CONCLUSIONSHigh total and animal protein intake was associated with a modest elevated risk of type 2 diabetes in a large cohort of European adults. In view of the rapidly increasing prevalence of type 2 diabetes, limiting iso-energetic diets high in dietary proteins, particularly from animal sources, should be considered
Sugar-added beverages consumption among kindergarten children of Crete: effects on nutritional status and risk of obesity
<p>Abstract</p> <p>Objective</p> <p>To assess the intake of sugar-added beverages such as soft drinks and commercially available fruit juices in kindergarten children, and to examine its association with obesity indices, physical activity levels and dietary habits.</p> <p>Methods</p> <p>A total of 856 children aged 4–7 years living in Crete, Greece in 2004–5 were included in this cross-sectional study. Nutrient and food intake was assessed with the use of 3-day weighed food records. Body measurements were used in order to assess BMI and waist circumference, and moderate-to-vigorous physical activity was calculated with the use of a questionnaire.</p> <p>Results</p> <p>Approximately 59.8% of all children consumed sugar-added beverages on a daily basis. High intake of sugar-added beverages (> 250 g/day) was associated with low intakes of calcium (p < 0.001), vitamin A and E (p < 0.010), fruits and vegetables (p = 0.007), and milk and yogurt (p = 0.048). Compared to non or low consumers, high consumers of sugar-added beverages (> 250 g/day) had higher BMI levels and two times greater risk of being overweight and/or obese (OR:2.35, p = 0.023).</p> <p>Conclusion</p> <p>High intake of sugar-added beverages in kindergarten children is associated with poor eating habits and inadequate nutrient intake, as well as increased risk for developing childhood obesity.</p
A data-driven methodology reveals novel myofiber clusters in older human muscles
Skeletal muscles control posture, mobility and strength, and influence whole-body metabolism. Muscles are built of different types of myofibers, each having specific metabolic, molecular, and contractile properties. Fiber classification is, therefore, regarded the key for understanding muscle biology, (patho-) physiology. The expression of three myosin heavy chain (MyHC) isoforms, MyHC-1, MyHC-2A, and MyHC-2X, marks myofibers in humans. Typically, myofiber classification is performed by an eye-based histological analysis. This classical approach is insufficient to capture complex fiber classes, expressing more than one MyHC-isoform. We, therefore, developed a methodological procedure for high-throughput characterization of myofibers on the basis of multiple isoforms. The mean fluorescence intensity of the three most abundant MyHC isoforms was measured per myofiber in muscle biopsies of 56 healthy elderly adults, and myofiber classes were identified using computational biology tools. Unsupervised clustering revealed the existence of six distinct myofiber clusters. A comparison with the visual assessment of myofibers using the same images showed that some of these myofiber clusters could not be detected or were frequently misclassified. The presence of these six clusters was reinforced by RNA expressions levels of sarcomeric genes. In addition, one of the clusters, expressing all three MyHC isoforms, correlated with histological measures of muscle health. To conclude, this methodological procedure enables deep characterization of the complex muscle heterogeneity. This study opens opportunities to further investigate myofiber composition in comparative studies.Development and application of statistical models for medical scientific researc
- …