1,143 research outputs found

    Incorporating expert opinion and fine-scale vegetation mapping into statistical models of faunal distribution

    Get PDF
    1. Abiotic environmental predictors and broad-scale vegetation have been used widely to model the regional distributions of faunal species within forested regions of Australia. These models have been developed using stepwise statistical procedures but incorporate only limited expert involvement of the type sometimes advocated in distribution modelling. The objectives of this study were twofold. First, to evaluate techniques for incorporating fine-scaled vegetation and growth-stage mapping into models of species distribution. Secondly, to compare methods that incorporate expert opinion directly into statistical models derived using stepwise statistical procedures. 2. Using faunal data from north-east New South Wales, Australia, logistic regression models using fine-scale vegetation and expert opinion were compared with models employing only abiotic and broad vegetation variables. 3. Vegetation and growth-stage information was incorporated into models of species distribution in two ways, both of which used expert opinion to derive new explanatory variables. The first approach amalgamated fine-scaled vegetation classes into broader classes of ecological relevance to fauna. In the second approach, ordinal habitat indices were derived from vegetation and growth-stage mapping using rules specified by an expert panel. These indices described habitat features thought to be relevant to the faunal groups studied (e.g. tree hollow availability, fleshy fruit production). Landscape composition was calculated using these new variables within a 500-m and 2-km radius of each site. Each habitat index generated a spatially neutral variable and two spatial context variables. 4. Expert opinion was incorporated during the pre-modelling, model-fitting and post -modelling stages. At the pre-modelling stage experts developed new explanatory variables based on mapped fine-scale vegetation and growth-stage information. At the model-fitting stage an expert panel selected a subset of potential explanatory variables from the available set. At the post-modelling stage expert opinion modified or refined maps of predicted species distribution generated by statistical models. For comparative purposes expert opinion was also used to develop maps of species distribution by defining rules within a geographical information system, without the aid of statistical modelling. 5. Predictive accuracy was not improved significantly by incorporating habitat indices derived by applying expert opinion to fine-scaled vegetation and growth-stage mapping. Use of expert input at the pre-modelling stage to derive and select potential explanatory variables therefore does not provide more information than that provided by remotely mapped vegetation. 6. The incorporation of expert opinion at the model-fitting or post-modelling stages resulted in small but insignificant gains in predictive accuracy. The predictive accuracy of purely expert models was less than that achieved by approaches based on statistical modelling. 7. The study, one of few available evaluations of expert opinion in models of species distribution, suggests that expert modification of fitted statistical models should be confined to species for which models are grossly in error, or for which insufficient data exist to construct solely statistical models

    On postglacial sea level—III. Incorporating sediment redistribution

    Get PDF
    We derive a generalized theory for gravitationally self-consistent, static sea level variations on earth models of arbitrary complexity that takes into account the redistribution of sediments. The theory is an extension of previous work that incorporated, into the governing equations, shoreline migration due to local sea level variations and changes in the geometry of grounded, marine-based ice. In addition, we use viscoelastic Love number theory to present a version of the new theory valid for spherically symmetric earth models. The Love number theory accounts for the gravitational, deformational and rotational effects of the sediment redistribution. As a first, illustrative application of the new theory, we compute the perturbation in sea level driven by an idealized pulse of sediment transport into the Gulf of Mexico. We demonstrate that incorporating a gravitationally self-consistent water load in this case significantly improves the accuracy of sea level predictions relative to previous simplified treatments of the sediment redistribution

    Emergence of chaotic scattering in ultracold Er and Dy

    Full text link
    We show that for ultracold magnetic lanthanide atoms chaotic scattering emerges due to a combination of anisotropic interaction potentials and Zeeman coupling under an external magnetic field. This scattering is studied in a collaborative experimental and theoretical effort for both dysprosium and erbium. We present extensive atom-loss measurements of their dense magnetic Feshbach resonance spectra, analyze their statistical properties, and compare to predictions from a random-matrix-theory inspired model. Furthermore, theoretical coupled-channels simulations of the anisotropic molecular Hamiltonian at zero magnetic field show that weakly-bound, near threshold diatomic levels form overlapping, uncoupled chaotic series that when combined are randomly distributed. The Zeeman interaction shifts and couples these levels, leading to a Feshbach spectrum of zero-energy bound states with nearest-neighbor spacings that changes from randomly to chaotically distributed for increasing magnetic field. Finally, we show that the extreme temperature sensitivity of a small, but sizeable fraction of the resonances in the Dy and Er atom-loss spectra is due to resonant non-zero partial-wave collisions. Our threshold analysis for these resonances indicates a large collision-energy dependence of the three-body recombination rate

    Altered hippocampal function in major depression despite intact structure and resting perfusion

    Get PDF
    Background: Hippocampal volume reductions in major depression have been frequently reported. However, evidence for functional abnormalities in the same region in depression has been less clear. We investigated hippocampal function in depression using functional magnetic resonance imaging (fMRI) and neuropsychological tasks tapping spatial memory function, with complementing measures of hippocampal volume and resting blood flow to aid interpretation. Method: A total of 20 patients with major depressive disorder (MDD) and a matched group of 20 healthy individuals participated. Participants underwent multimodal magnetic resonance imaging (MRI): fMRI during a spatial memory task, and structural MRI and resting blood flow measurements of the hippocampal region using arterial spin labelling. An offline battery of neuropsychological tests, including several measures of spatial memory, was also completed. Results: The fMRI analysis showed significant group differences in bilateral anterior regions of the hippocampus. While control participants showed task-dependent differences in blood oxygen level-dependent (BOLD) signal, depressed patients did not. No group differences were detected with regard to hippocampal volume or resting blood flow. Patients showed reduced performance in several offline neuropsychological measures. All group differences were independent of differences in hippocampal volume and hippocampal blood flow. Conclusions: Functional abnormalities of the hippocampus can be observed in patients with MDD even when the volume and resting perfusion in the same region appear normal. This suggests that changes in hippocampal function can be observed independently of structural abnormalities of the hippocampus in depression

    Annual changes in the Biodiversity Intactness Index in tropical and subtropical forest biomes, 2001–2012

    Get PDF
    Few biodiversity indicators are available that reflect the state of broad-sense biodiversity—rather than of particular taxa—at fine spatial and temporal resolution. One such indicator, the Biodiversity Intactness Index (BII), estimates how the average abundance of the native terrestrial species in a region compares with their abundances in the absence of pronounced human impacts. We produced annual maps of modelled BII at 30-arc-second resolution (roughly 1 km at the equator) across tropical and subtropical forested biomes, by combining annual data on land use, human population density and road networks, and statistical models of how these variables affect overall abundance and compositional similarity of plants, fungi, invertebrates and vertebrates. Across tropical and subtropical biomes, BII fell by an average of 1.9 percentage points between 2001 and 2012, with 81 countries seeing an average reduction and 43 an average increase; the extent of primary forest fell by 3.9% over the same period. We did not find strong relationships between changes in BII and countries’ rates of economic growth over the same period; however, limitations in mapping BII in plantation forests may hinder our ability to identify these relationships. This is the first time temporal change in BII has been estimated across such a large region

    Non-monotonic temperature evolution of dynamic correlations in glass-forming liquids

    Full text link
    The viscosity of glass-forming liquids increases by many orders of magnitude if their temperature is lowered by a mere factor of 2-3 [1,2]. Recent studies suggest that this widespread phenomenon is accompanied by spatially heterogeneous dynamics [3,4], and a growing dynamic correlation length quantifying the extent of correlated particle motion [5-7]. Here we use a novel numerical method to detect and quantify spatial correlations which reveal a surprising non-monotonic temperature evolution of spatial dynamical correlations, accompanied by a second length scale that grows monotonically and has a very different nature. Our results directly unveil a dramatic qualitative change in atomic motions near the mode-coupling crossover temperature [8] which involves no fitting or indirect theoretical interpretation. Our results impose severe new constraints on the theoretical description of the glass transition, and open several research perspectives, in particular for experiments, to confirm and quantify our observations in real materials.Comment: 7 page

    Acromegaly, Mr Punch and caricature.

    Get PDF
    The origin of Mr Punch from the Italian Pulcinella of the Commedia dell'arte is well known but his feature, large hooked nose, protruding chin, kyphosis and sternal protrusion all in an exaggerated form also suggest the caricature of an acromegalic. This paper looks at the physical characteristics of acromegaly, the origin of Mr Punch and the development of caricature linking them together in the acromegalic caricature that now has a life of its own

    Dispersively detected Pauli Spin-Blockade in a Silicon Nanowire Field-Effect Transistor

    Full text link
    We report the dispersive readout of the spin state of a double quantum dot formed at the corner states of a silicon nanowire field-effect transistor. Two face-to-face top-gate electrodes allow us to independently tune the charge occupation of the quantum dot system down to the few-electron limit. We measure the charge stability of the double quantum dot in DC transport as well as dispersively via in-situ gate-based radio frequency reflectometry, where one top-gate electrode is connected to a resonator. The latter removes the need for external charge sensors in quantum computing architectures and provides a compact way to readout the dispersive shift caused by changes in the quantum capacitance during interdot charge transitions. Here, we observe Pauli spin-blockade in the high-frequency response of the circuit at finite magnetic fields between singlet and triplet states. The blockade is lifted at higher magnetic fields when intra-dot triplet states become the ground state configuration. A lineshape analysis of the dispersive phase shift reveals furthermore an intradot valley-orbit splitting Δvo\Delta_{vo} of 145 ÎŒ\mueV. Our results open up the possibility to operate compact CMOS technology as a singlet-triplet qubit and make split-gate silicon nanowire architectures an ideal candidate for the study of spin dynamics
    • 

    corecore