100 research outputs found

    CEA systems: the means to achieve future food security and environmental sustainability?

    Get PDF
    As demand for food production continues to rise, it is clear that in order to meet the challenges of the future in terms of food security and environmental sustainability, radical changes are required throughout all levels of the global food system. Controlled Environment Agriculture (CEA) (a.k.a. indoor farming) has an advantage over conventional farming methods in that production processes can be largely separated from the natural environment, thus, production is less reliant on environmental conditions, and pollution can be better restricted and controlled. While output potential of conventional farming at a global scale is predicted to suffer due to the effects of climate change, technological advancements in this time will drastically improve both the economic and environmental performance of CEA systems. This article summarizes the current understanding and gaps in knowledge surrounding the environmental sustainability of CEA systems, and assesses whether these systems may allow for intensive and fully sustainable agriculture at a global scale. The energy requirements and subsequent carbon footprint of many systems is currently the greatest environmental hurdle to overcome. The lack of economically grown staple crops which make up the majority of calories consumed by humans is also a major limiting factor in the expansion of CEA systems to reduce the environmental impacts of food production at a global scale. This review introduces the concept of Integrated System CEA (ISCEA) in which multiple CEA systems can be deployed in an integrated localized fashion to increase efficiency and reduce environmental impacts of food production. We conclude that it is feasible that with sufficient green energy, that ISCEA systems could largely negate most forms of environmental damage associated with conventional farming at a global scale (e.g., GHGs, deforestation, nitrogen, phosphorus, pesticide use, etc.). However, while there is plenty of research being carried out into improving energy efficiency, renewable energy and crop diversification in CEA systems, the circular economy approach to waste is largely ignored. We recommend that industries begin to investigate how nutrient flows and efficiencies in systems can be better managed to improve the environmental performance of CEA systems of the future

    Annexin A8 identifies a subpopulation of transiently quiescent c-kit positive luminal progenitor cells of the ductal mammary epithelium

    Get PDF
    We have previously shown that Annexin A8 (ANXA8) is strongly associated with the basal-like subgroup of breast cancers, including BRCA1-associated breast cancers, and poor prognosis; while in the mouse mammary gland AnxA8 mRNA is expressed in low-proliferative isolated pubertal mouse mammary ductal epithelium and after enforced involution, but not in isolated highly proliferative terminal end buds (TEB) or during pregnancy. To better understand ANXA8’s association with this breast cancer subgroup we established ANXA8’s cellular distribution in the mammary gland and ANXA8’s effect on cell proliferation. We show that ANXA8 expression in the mouse mammary gland was strong during pre-puberty before the expansion of the rudimentary ductal network and was limited to a distinct subpopulation of ductal luminal epithelial cells but was not detected in TEB or in alveoli during pregnancy. Similarly, during late involution its expression was found in the surviving ductal epithelium, but not in the apoptotic alveoli. Double-immunofluorescence (IF) showed that ANXA8 positive (+ve) cells were ER-alpha negative (−ve) and mostly quiescent, as defined by lack of Ki67 expression during puberty and mid-pregnancy, but not terminally differentiated with ~15% of ANXA8 +ve cells re-entering the cell cycle at the start of pregnancy (day 4.5). RT-PCR on RNA from FACS-sorted cells and double-IF showed that ANXA8+ve cells were a subpopulation of c-kit +ve luminal progenitor cells, which have recently been identified as the cells of origin of basal-like breast cancers. Over expression of ANXA8 in the mammary epithelial cell line Kim-2 led to a G0/G1 arrest and suppressed Ki67 expression, indicating cell cycle exit. Our data therefore identify ANXA8 as a potential mediator of quiescence in the normal mouse mammary ductal epithelium, while its expression in basal-like breast cancers may be linked to ANXA8’s association with their specific cells of origin

    CEA systems: the means to achieve future food security and environmental sustainability?

    Get PDF
    As demand for food production continues to rise, it is clear that in order to meet the challenges of the future in terms of food security and environmental sustainability, radical changes are required throughout all levels of the global food system. Controlled Environment Agriculture (CEA) (a.k.a. indoor farming) has an advantage over conventional farming methods in that production processes can be largely separated from the natural environment, thus, production is less reliant on environmental conditions, and pollution can be better restricted and controlled. While output potential of conventional farming at a global scale is predicted to suffer due to the effects of climate change, technological advancements in this time will drastically improve both the economic and environmental performance of CEA systems. This article summarizes the current understanding and gaps in knowledge surrounding the environmental sustainability of CEA systems, and assesses whether these systems may allow for intensive and fully sustainable agriculture at a global scale. The energy requirements and subsequent carbon footprint of many systems is currently the greatest environmental hurdle to overcome. The lack of economically grown staple crops which make up the majority of calories consumed by humans is also a major limiting factor in the expansion of CEA systems to reduce the environmental impacts of food production at a global scale. This review introduces the concept of Integrated System CEA (ISCEA) in which multiple CEA systems can be deployed in an integrated localized fashion to increase efficiency and reduce environmental impacts of food production. We conclude that it is feasible that with sufficient green energy, that ISCEA systems could largely negate most forms of environmental damage associated with conventional farming at a global scale (e.g., GHGs, deforestation, nitrogen, phosphorus, pesticide use, etc.). However, while there is plenty of research being carried out into improving energy efficiency, renewable energy and crop diversification in CEA systems, the circular economy approach to waste is largely ignored. We recommend that industries begin to investigate how nutrient flows and efficiencies in systems can be better managed to improve the environmental performance of CEA systems of the future

    6H-SiC Transistor Integrated Circuits Demonstrating Prolonged Operation at 500 C

    Get PDF
    The NASA Glenn Research Center is developing very high temperature semiconductor integrated circuits (ICs) for use in the hot sections of aircraft engines and for Venus exploration where ambient temperatures are well above the approximately 300 degrees Centigrade effective limit of silicon-on-insulator IC technology. In order for beneficial technology insertion to occur, such transistor ICs must be capable of prolonged operation in such harsh environments. This paper reports on the fabrication and long-term 500 degrees Centigrade operation of 6H-SiC integrated circuits based on epitaxial 6H-SiC junction field effect transistors (JFETs). Simple analog amplifier and digital logic gate ICs have now demonstrated thousands of hours of continuous 500 degrees Centigrade operation in oxidizing air atmosphere with minimal changes in relevant electrical parameters. Electrical characterization and modeling of transistors and circuits at temperatures from 24 degrees Centigrade to 500 degrees Centigrade is also described. Desired analog and digital IC functionality spanning this temperature range was demonstrated without changing the input signals or power supply voltages

    Long-Term Characterization of 6H-SiC Transistor Integrated Circuit Technology Operating at 500 C

    Get PDF
    NASA has been developing very high temperature semiconductor integrated circuits for use in the hot sections of aircraft engines and for Venus exploration. This paper reports on long-term 500 C electrical operation of prototype 6H-SiC integrated circuits based on epitaxial 6H-SiC junction field effect transistors (JFETs). As of this writing, some devices have surpassed 4000 hours of continuous 500 C electrical operation in oxidizing air atmosphere with minimal change in relevant electrical parameters

    Stable Electrical Operation of 6H-SiC JFETs and ICs for Thousands of Hours at 500 C

    Get PDF
    The fabrication and testing of the first semiconductor transistors and small-scale integrated circuits (ICs) to achieve up to 3000 h of stable electrical operation at 500 C in air ambient is reported. These devices are based on an epitaxial 6H-SiC junction field-effect transistor process that successfully integrated high temperature ohmic contacts, dielectric passivation, and ceramic packaging. Important device and circuit parameters exhibited less than 10% of change over the course of the 500 C operational testing. These results establish a new technology foundation for realizing durable 500 C ICs for combustion-engine sensing and control, deep-well drilling, and other harsh-environment applications

    Associations between childhood maltreatment and inflammatory markers.

    Get PDF
    BACKGROUND:Childhood maltreatment is one of the strongest predictors of adulthood depression and alterations to circulating levels of inflammatory markers is one putative mechanism mediating risk or resilience.AimsTo determine the effects of childhood maltreatment on circulating levels of 41 inflammatory markers in healthy individuals and those with a major depressive disorder (MDD) diagnosis. METHOD:We investigated the association of childhood maltreatment with levels of 41 inflammatory markers in two groups, 164 patients with MDD and 301 controls, using multiplex electrochemiluminescence methods applied to blood serum. RESULTS:Childhood maltreatment was not associated with altered inflammatory markers in either group after multiple testing correction. Body mass index (BMI) exerted strong effects on interleukin-6 and C-reactive protein levels in those with MDD. CONCLUSIONS:Childhood maltreatment did not exert effects on inflammatory marker levels in either the participants with MDD or the control group in our study. Our results instead highlight the more pertinent influence of BMI.Declaration of interestD.A.C. and H.W. work for Eli Lilly Inc. R.N. has received speaker fees from Sunovion, Jansen and Lundbeck. G.B. has received consultancy fees and funding from Eli Lilly. R.H.M.-W. has received consultancy fees or has a financial relationship with AstraZeneca, Bristol-Myers Squibb, Cyberonics, Eli Lilly, Ferrer, Janssen-Cilag, Lundbeck, MyTomorrows, Otsuka, Pfizer, Pulse, Roche, Servier, SPIMACO and Sunovian. I.M.A. has received consultancy fees or has a financial relationship with Alkermes, Lundbeck, Lundbeck/Otsuka, and Servier. S.W. has sat on an advisory board for Sunovion, Allergan and has received speaker fees from Astra Zeneca. A.H.Y. has received honoraria for speaking from Astra Zeneca, Lundbeck, Eli Lilly, Sunovion; honoraria for consulting from Allergan, Livanova and Lundbeck, Sunovion, Janssen; and research grant support from Janssen. A.J.C. has received honoraria for speaking from Astra Zeneca, honoraria for consulting with Allergan, Livanova and Lundbeck and research grant support from Lundbeck

    Expert perspectives on global biodiversity loss and its drivers and impacts on people

    Full text link
    Despite substantial progress in understanding global biodiversity loss, major taxonomic and geographic knowledge gaps remain. Decision makers often rely on expert judgement to fill knowledge gaps, but are rarely able to engage with sufficiently large and diverse groups of specialists. To improve understanding of the perspectives of thousands of biodiversity experts worldwide, we conducted a survey and asked experts to focus on the taxa and freshwater, terrestrial, or marine ecosystem with which they are most familiar. We found several points of overwhelming consensus (for instance, multiple drivers of biodiversity loss interact synergistically) and important demographic and geographic differences in specialists’ perspectives and estimates. Experts from groups that are underrepresented in biodiversity science, including women and those from the Global South, recommended different priorities for conservation solutions, with less emphasis on acquiring new protected areas, and provided higher estimates of biodiversity loss and its impacts. This may in part be because they disproportionately study the most highly threatened taxa and habitats

    Developing multiscale and integrative nature–people scenarios using the Nature Futures Framework

    Get PDF
    1. Scientists have repeatedly argued that transformative, multiscale global scenarios are needed as tools in the quest to halt the decline of biodiversity and achieve sustainability goals. 2. As a first step towards achieving this, the researchers who participated in the scenarios and models expert group of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES) entered into an iterative, participatory process that led to the development of the Nature Futures Framework (NFF). 3. The NFF is a heuristic tool that captures diverse, positive relationships of humans with nature in the form of a triangle. It can be used both as a boundary object for continuously opening up more plural perspectives in the creation of desirable nature scenarios and as an actionable framework for developing consistent nature scenarios across multiple scales. 4. Here we describe the methods employed to develop the NFF and how it fits into a longer term process to create transformative, multiscale scenarios for nature. We argue that the contribution of the NFF is twofold: (a) its ability to hold a plurality of perspectives on what is desirable, which enables the development of joint goals and visions and recognizes the possible convergence and synergies of measures to achieve these visions and (b), its multiscale functionality for elaborating scenarios and models that can inform decision-making at relevant levels, making it applicable across specific places and perspectives on nature. 5. If humanity is to achieve its goal of a more sustainable and prosperous future rooted in a flourishing nature, it is critical to open up a space for more plural per- spectives of human–nature relationships. As the global community sets out to de- velop new goals for biodiversity, the NFF can be used as a navigation tool helping to make diverse, desirable futures possible
    • 

    corecore