13,085 research outputs found
Searching in Unstructured Overlays Using Local Knowledge and Gossip
This paper analyzes a class of dissemination algorithms for the discovery of
distributed contents in Peer-to-Peer unstructured overlay networks. The
algorithms are a mix of protocols employing local knowledge of peers'
neighborhood and gossip. By tuning the gossip probability and the depth k of
the k-neighborhood of which nodes have information, we obtain different
dissemination protocols employed in literature over unstructured P2P overlays.
The provided analysis and simulation results confirm that, when properly
configured, these schemes represent a viable approach to build effective P2P
resource discovery in large-scale, dynamic distributed systems.Comment: A revised version of the paper appears in Proc. of the 5th
International Workshop on Complex Networks (CompleNet 2014) - Studies in
Computational Intelligence Series, Springer-Verlag, Bologna (Italy), March
201
Optimal antibunching in passive photonic devices based on coupled nonlinear resonators
We propose the use of weakly nonlinear passive materials for prospective
applications in integrated quantum photonics. It is shown that strong
enhancement of native optical nonlinearities by electromagnetic field
confinement in photonic crystal resonators can lead to single-photon generation
only exploiting the quantum interference of two coupled modes and the effect of
photon blockade under resonant coherent driving. For realistic system
parameters in state of the art microcavities, the efficiency of such
single-photon source is theoretically characterized by means of the
second-order correlation function at zero time delay as the main figure of
merit, where major sources of loss and decoherence are taken into account
within a standard master equation treatment. These results could stimulate the
realization of integrated quantum photonic devices based on non-resonant
material media, fully integrable with current semiconductor technology and
matching the relevant telecom band operational wavelengths, as an alternative
to single-photon nonlinear devices based on cavity-QED with artificial atoms or
single atomic-like emitters.Comment: to appear in New J. Physic
The Effective Lagrangian of Three Dimensional Quantum Chromodynamics
We consider the low energy limit of three dimensional Quantum Chromodynamics
with an even number of flavors. We show that Parity is not spontaneously
broken, but the global (flavor) symmetry is spontaneously broken. The low
energy effective lagrangian is a nonlinear sigma model on the Grassmannian.
Some Chern--Simons terms are necessary in the lagrangian to realize the
discrete symmetries correctly. We consider also another parametrization of the
low energy sector which leads to a three dimensional analogue of the
Wess--Zumino--Witten--Novikov model. Since three dimensional QCD is believed to
be a model for quantum anti--ferromagnetism, our effective lagrangian can
describe their long wavelength excitations (spin waves).Comment: 18 page
Three Dimensional Quantum Chromodynamics
The subject of this talk was the review of our study of three ()
dimensional Quantum Chromodynamics. In our previous works, we showed the
existence of a phase where parity is unbroken and the flavor group is
broken to a subgroup . We derived the low energy effective
action for the theory and showed that it has solitonic excitations with Fermi
statistic, to be identified with the three dimensional ``baryon''. Finally, we
studied the current algebra for this effective action and we found a
co-homologically non trivial generalization of Kac-Moody algebras to three
dimensions.Comment: 7 pages, Plain TEX, talk presented by S.G. Rajeev at the XXVI
INTERNATIONAL CONFERENCE ON HIGH ENERGY PHYSICS, DALLAS TX AUG. 199
Baryons as Solitons in Three Dimensional Quantum Chromodynamics
We show that baryons of three dimensional Quantum Chromodynamics can be
understood as solitons of its effective lagrangian. In the parity preserving
phase we study, these baryons are fermions for odd and bosons for even
, never anyons. We quantize the collective variables of the solitons and
there by calculate the flavor quantum numbers, magnetic moments and mass
splittings of the baryon. The flavor quantum numbers are in agreement with
naive quark model for the low lying states. The magnetic moments and mass
splittings are smaller in the soliton model by a factor of . We also show that there is a dibaryon solution that is an analogue
of the deuteron. These solitons can describe defects in a quantum
anti--ferromagnet.Comment: 22 pages + 4 figures (figures not included, postscript files
available upon request
Non-neutral theory of biodiversity
We present a non-neutral stochastic model for the dynamics taking place in a
meta-community ecosystems in presence of migration. The model provides a
framework for describing the emergence of multiple ecological scenarios and
behaves in two extreme limits either as the unified neutral theory of
biodiversity or as the Bak-Sneppen model. Interestingly, the model shows a
condensation phase transition where one species becomes the dominant one, the
diversity in the ecosystems is strongly reduced and the ecosystem is
non-stationary. This phase transition extend the principle of competitive
exclusion to open ecosystems and might be relevant for the study of the impact
of invasive species in native ecologies.Comment: 4 pages, 3 figur
Taming the Non Abelian Born-Infeld Action
We show how to reduce the non abelian Born-Infeld action describing the
interaction of two D-particles to the sum of elliptic integrals depending on
simple kinematic invariants. This representation gives explicitly all alpha'
corrections to D-particle dynamics. The alpha' corrections induce a
stabilization of the classical trajectories such as the ``eikonal'' which are
unstable within the Yang-Mills approximation.Comment: 17 pages, Latex, 6 figure
Recommended from our members
FGF2 is expressed in human and murine embryonic choroid plexus and affects choroid plexus cell behaviour
<p>Abstract</p> <p>Background</p> <p>Although fibroblast growth factor (Fgf) signalling plays crucial roles in several developing and mature tissues, little information is currently available on expression of Fgf2 during early choroid plexus development and whether Fgf2 directly affects the behaviour of the choroid plexus epithelium (CPe). The purpose of this study was to investigate expression of Fgf2 in rodent and human developing CPe and possible function of Fgf2, using <it>in vitro </it>models. The application of Fgf2 to brain <it>in vivo </it>can affect the whole tissue, making it difficult to assess specific responses of the CPe.</p> <p>Methods</p> <p>Expression of Fgf2 was studied by immunohistochemistry in rodent and human embryonic choroid plexus. Effects of Fgf2 on growth, secretion, aggregation and gene expression was investigated using rodent CPe vesicles, a three-dimensional polarized culture model that closely mimics CPe properties <it>in vivo</it>, and rodent CPe monolayer cultures.</p> <p>Results</p> <p>Fgf2 was present early in development of the choroid plexus both in mouse and human, suggesting the importance of this ligand in Fgf signalling in the developing choroid plexus. Parallel analysis of Fgf2 expression and cell proliferation during CP development suggests that Fgf2 is not involved in CPe proliferation <it>in vivo</it>. Consistent with this observation is the failure of Fgf2 to increase proliferation in the tri-dimensional vesicle culture model. The CPe however, can respond to Fgf2 treatment, as the diameter of CPe vesicles is significantly increased by treatment with this growth factor. We show that this is due to an increase in cell aggregation during vesicle formation rather than increased secretion into the vesicle lumen. Finally, Fgf2 regulates expression of the CPe-associated transcription factors, <it>Foxj1 </it>and <it>E2f5</it>, whereas transthyretin, a marker of secretory activity, is not affected by Fgf2 treatment.</p> <p>Conclusion</p> <p>Fgf2 expression early in the development of both human and rodent choroid plexus, and its ability to modulate behaviour and gene expression in CPe, supports the view that Fgf signalling plays a role in the maintenance of integrity and function of this specialized epithelium, and that this role is conserved between rodents and humans.</p
On the Complex Network Structure of Musical Pieces: Analysis of Some Use Cases from Different Music Genres
This paper focuses on the modeling of musical melodies as networks. Notes of
a melody can be treated as nodes of a network. Connections are created whenever
notes are played in sequence. We analyze some main tracks coming from different
music genres, with melodies played using different musical instruments. We find
out that the considered networks are, in general, scale free networks and
exhibit the small world property. We measure the main metrics and assess
whether these networks can be considered as formed by sub-communities. Outcomes
confirm that peculiar features of the tracks can be extracted from this
analysis methodology. This approach can have an impact in several multimedia
applications such as music didactics, multimedia entertainment, and digital
music generation.Comment: accepted to Multimedia Tools and Applications, Springe
Efficient implementation of characteristic-based schemes on unstructured triangular grids
Using characteristics to treat advection terms in time-dependent PDEs leads to a class of schemes, e.g., semi-Lagrangian and Lagrange–Galerkin schemes, which preserve stability under large Courant numbers, and may therefore be appealing in many practical situations. Unfortunately, the need of locating the feet of characteristics may cause a serious drop of efficiency in the case of unstructured space grids, and thus prevent the use of large time-step schemes on complex geometries. In this paper, we perform an in-depth analysis of the main recipes available for characteristic location, and propose a technique to improve the efficiency of this phase, using additional information related to the advecting vector field. This results in a clear improvement of execution times in the unstructured case, thus extending the range of applicability of large time-step schemes
- …