We propose the use of weakly nonlinear passive materials for prospective
applications in integrated quantum photonics. It is shown that strong
enhancement of native optical nonlinearities by electromagnetic field
confinement in photonic crystal resonators can lead to single-photon generation
only exploiting the quantum interference of two coupled modes and the effect of
photon blockade under resonant coherent driving. For realistic system
parameters in state of the art microcavities, the efficiency of such
single-photon source is theoretically characterized by means of the
second-order correlation function at zero time delay as the main figure of
merit, where major sources of loss and decoherence are taken into account
within a standard master equation treatment. These results could stimulate the
realization of integrated quantum photonic devices based on non-resonant
material media, fully integrable with current semiconductor technology and
matching the relevant telecom band operational wavelengths, as an alternative
to single-photon nonlinear devices based on cavity-QED with artificial atoms or
single atomic-like emitters.Comment: to appear in New J. Physic