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ABSTRACT

The subject of this talk was the review of our study of three (2+1) dimensional Quantum

Chromodynamics. In our previous works, we showed the existence of a phase where parity

is unbroken and the flavor group U(2n) is broken to a subgroup U(n)×U(n). We derived

the low energy effective action for the theory and showed that it has solitonic excitations

with Fermi statistic, to be identified with the three dimensional “baryon”. Finally, we

studied the current algebra for this effective action and we found a co-homologically non

trivial generalization of Kac-Moody algebras to three dimensions.

† This work was supported in part by DOE Grant DE-FG02-91ER40685.
‡ Talk presented by S.G. Rajeev at the XXVI International Conference on High Energy

Physics, Dallas TX Aug. 1992
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INTRODUCTION

Quantum Chromodynamics (QCD) is the universally accepted theory of strong in-

teractions. In spite of this fact, there are still many unresolved issues that need to be

addressed before we can declare our understanding of QCD complete. Among the least

understood problems are those that cannot be studied by perturbation theory, such as

chiral symmetry breaking and quark confinement. It is therefore natural to look for other

models that retain the basic features of QCD but allow one to study these issues in a

simpler setting. One way to construct such models is to lower the dimensionality of the

system.

Two (1 + 1) dimensional QCD has been extensively studied but it fails to be a good

analogue for some purposes: gauge symmetries in two dimensions are somewhat trivial and

no spontaneous breaking of continuous symmetries can occur. We chose to consider three

dimensional QCD and to study the breaking of the global symmetries in this context. We

find a remarkable similarity between this model and what is known about four dimensional

QCD from the study of the Skyrme model. Working in lower dimensions we have the

extra bonus of obtaining an effective theory that is more tractable. This theory can be

regarded as a limiting case of coset models that are renormalizable in the 1/N expansions.

Furthermore, its current algebra is a nontrivial abelian extension of the naive algebra and

it might give rise to interesting representation theory.

THREE DIMENSIONAL QCD

Let us begin by writing down the Lagrangian density for three dimensional QCD. The

gauge group is SU(Nc), the tensor Fµν is the curvature associated to the gauge field and qi

represent the quark fields. The flavor index i runs from 1 to N and we will always assume

N to be even (N = 2n). Color and spinor indices are suppressed but it should be kept in

mind that, as spinor, qi is a two component complex Grassmann field.

In this notation, the Lagrangian reads

L = − 1

α
tr FµνF

µν +
∑

i

q̄i(γ · ∇+mi)qi (1)

In the massless limit, this Lagrangian possess a global Z2 × U(2n) symmetry. Since the

number of flavor is even, it is possible to make all quarks massive without breaking parity
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explicitly. This is done by pairing them into doublets (qi, q−i) of equal and opposite masses,

mi = −m−i, i = 1 · · ·n.
Our two main results regarding the spontaneous breaking of the global symmetries

are the following. First, parity is not spontaneously broken if N is even. No Chern-Simons

term for the color gauge field can arise and the theory should be in the confining phase.

The proof of this statement is an adaptation of the argument given by Vafa and Witten for

four dimensional QCD2. It relies on the possibility of defining a positive fermionic measure

for the path integral. For completeness, let us remark that this argument fails when the

number of flavors is odd3, indicating that the theory is in a parity violating phase and

therefore it is not a good analogue for QCD.

Second, in the massless limit, the flavor symmetry U(2n) is spontaneously broken to

U(n)×U(n). By arguments similar to those given by Coleman and Witten4, one can show

that if the symmetry is broken, then it must break to this specific subgroup. One is then

left with the task of finding at least one correlation function of the theory that breaks the

U(2n) symmetry in the limit of vanishing quark masses. This function can be chosen to

be the two point correlation function of the flavor currents:

< J i
µ(k)J

k
ν (−k) >=

iNc

4π
ǫikǫµνρk

ρ +O(k2). (2)

In the massless limit, the leading term of this correlation function is proportional to

ǫik = ±δik, the plus sign being present for i = k > 0, the minus sign being present in the op-

posite case. The coefficient in (2) can be calculated exactly from some no-renormalization

theorems5.

EFFECTIVE LAGRANGIAN

Having understood the symmetry breaking pattern, we can now write down the ef-

fective Lagrangian1 for the light particles of the theory, i.e. the Goldstone bosons “pions”

associated to the broken generators. These are described by a field Φ valued in the Grass-

mannian manifold Gr2n,n = U(2n)/U(n) × U(n). Earlier, a different coset model with

a non trivial topological term had been proposed by Rabinovici et al.6, where the target

manifold was not the complex Grassmannian but the projective quaternionic space.

By the standard properties of the Grassmannian, Φ can be regarded as a 2n × 2n
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traceless hermitian matrix satisfying the condition Φ2 = 1. The odd dimensional analogue

of the Wess-Zumino-Witten term (WZW) can also be found by studying the generators

of H4(Gr2n,n). As in the four dimensional case, the WZW term cannot be written as the

integral of a local density but one can regard space-time M3 as the boundary of a four

dimensional manifold with boundary M4.

The form of the effective action is, in differential geometry notation,

S =
Fπ

2

∫

M3

dΦ ∗ dΦ+
Nc

64π

∫

M4

tr Φ(dΦ)4. (3)

The constant Fπ has the dimension of a mass in natural units and can be regarded as the

“pion decay constant”. The particular form for the WZW term (second term in eq. (3)),

has been chosen so that the equation of motion derived from it possess the same discrete

symmetry as three dimensional QCD. In particular, the equation of motion must violate

both internal ((t, x, y) → (t,−x, y)) and external (Φ → −Φ) parity but it must preserve

the combination of both. The coefficient Nc/64π in front of the WZW term is fixed by

requiring exp(−S) to be independent on the extension to M4 and by comparison with (2).

One can relax the assumption that led to eq. (3) and include the vector mesons as

dynamical degrees of freedom into the Lagrangian. It turns out that this is the correct way

to study the solitonic excitations (“baryons”) of the theory. The vector mesons provide

the short range repulsion needed to stabilize the soliton.

In our theory, a Chern-Simons term for these vector mesons arises from the WZW

term. This is the Chern-Simons term for the unbroken subgroup U(n) × U(n), not to be

confused with the (unexisting) color Chern-Simons term. Each U(n) factor in the unbroken

subgroup gives rise to its own Chern-Simons term. The relative coefficients of the two terms

must be chosen to be equal and opposite in order to preserve parity as a symmetry of the

effective theory. By writing Φ = χǫχ†, χ ∈ U(2n), ǫ as in (2) and denoting by A1 and A2

the vector fields associated to each U(n), the new effective action becomes

S̃ =
Fπ

2

∫

tr (∇µχ
†∇µχ+m2

πǫχǫχ
†)dx3 +

k

4π

2
∑

i=1

(−1)i
∫

tr (AidAi +
2

3
A3

i ) (4)

The two models (3) and (4) coincide in the limit of infinite vector meson mass.
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BARYONS AS SOLITONS

The “baryons ” of three dimensional QCD are described by the static solitonic solu-

tions of eq (4) with winding number one7. (Recall that π2(Gr2n,n) = Z, the baryon number

B is always identified with the winding number.) The low lying baryons transform under

flavor symmetry just as predicted by the quark model. The only important difference is

in the size of the baryon. The size predicted by the sigma model is larger by a factor

log(Fπ/Ncmπ) than the prediction from the naive quark model. This seems to indicate

that three is the lowest critical dimension for the applicability of the Skyrme model.

There are also higher baryon number solutions. Particularly pleasing is the existence of

a cylindrically symmetric B = 2 “di-baryon” solution. The existence of these solutions, in

particular the stability of the di-baryon solution has been proven by numerical methods,

since the equation of motion that arises for the cylindrically symmetric ansatz are not

exactly solvable. By use of relaxation methods we have obtained the radial profile for the

baryon density in both the B = 1 and the B = 2 case7.

CURRENT ALGEBRA

The effective action (3) admits an interesting current algebra. The canonical formula-

tion of the WZW model yields the Kac-Moody algebra in two dimension but fails to give

a Lie algebra in four. In our intermediate case we find that the current algebra (more

precisely the current-field algebra) is still a Lie algebra8. Care must be taken in choosing

the correct expression for the current J in a way that makes the Poisson brackets linear

in Φ and J . If the two dimensional space-like surface Σ is a torus, we can write these

relations in a plane wave basis:

{Φa
m,Φb

n} = 0, {Ja
m,Φb

n} = fabcΦc
m+n

{Ja
m, Jb

n} = fabcJc
m+n − k

16π
dabcǫijminjΦ

c
m+n

(5)

Above, m,n are two-dimensional vectors with integer components. Also, dabc is the usual

symmetric cubic invariant of U(2n) and fabc the structure constants.

The canonical formulation is completed by two first class constraints

Φ2 − 1 = 0 [J,Φ]
+
+

k

16π
ǫij(∂iΦ∂jΦ) = 0, (6)

5



and by the Hamiltonian function

H =
1

2

∫

Σ

tr

(

− 1

Fπ
√
g

(

J +
k

32π
ǫij∂iΦ∂jΦ

)2
+

Fπ
√
g

4
gij∂iΦ∂jΦ

)

d2x. (7)

It should be stressed that the quantities J and Φ are invariant under the action of

“gauge transformations” generated by the constraints. The constraints themselves express

the fact that the co-adjoint orbit of this algebra is the cotangent bundle of the Grassman-

nian.

We could quantize the action (3) if we could find a unitary, highest weight repre-

sentation for this algebra. At first sight this seems rather unphysical because (3) is not

perturbatively renormalizable. However, (3) belongs to a class of models that are renor-

malizable in the 1/N expansion. This is more clear if we consider a less symmetrical

Grassmannian, where Φ takes values in GrN,nU(N)/U(N − n) × U(n). For n = 1 this

is just the usual CPN−1 model, known to be renormalizable in the large N limit. For

n > 1, this model is still renormalizable in the limit N → ∞, n finite. Its current algebra

is still given by (5) and everything is left unchanged, except that now tr Φ = N − 2n 6= 0.

What fails in this case is the connection with three dimensional QCD because for these

“asymmetrical” models it is not possible to preserve parity. We expect these models to

yield a good quantum theory and this would be very exciting by itself. The original model

on Gr2n,n can probably be approached as limiting case.
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