21 research outputs found

    Ventricular Geometry From Non-contrast Non-ECG-gated CT Scans:An Imaging Marker of Cardiopulmonary Disease in Smokers

    Get PDF
    Cardiovascular disease is a major cause of morbidity in smokers, and as much as 50% of the estimated 24 million patients in the United States with chronic obstructive pulmonary disease (COPD) die of cardiovascular causes (1,2). Although echocardiography and cardiac magnetic resonance imaging (MRI) are often used to study cardiac structure and function in COPD (3), these are not routinely deployed in all smokers. Computed tomographic (CT) imaging of the chest is broadly used in clinical care and is increasingly used for lung cancer screening in high-risk smokers (4). Assessment of cardiac structure on those CT scans may help identify patients with COPD at greater risk of developing cardiac dysfunction. Rapid, noninvasive assessments of cardiac morphology and a better understanding of the functional interdependence of heart and lung may improve healthcare outcomes through early detection and initiation of treatment

    A Generalized Gamma Mixture Model for Ultrasonic Tissue Characterization

    Get PDF
    Several statistical models have been proposed in the literature to describe the behavior of speckles. Among them, the Nakagami distribution has proven to very accurately characterize the speckle behavior in tissues. However, it fails when describing the heavier tails caused by the impulsive response of a speckle. The Generalized Gamma (GG) distribution (which also generalizes the Nakagami distribution) was proposed to overcome these limitations. Despite the advantages of the distribution in terms of goodness of fitting, its main drawback is the lack of a closed-form maximum likelihood (ML) estimates. Thus, the calculation of its parameters becomes difficult and not attractive. In this work, we propose (1) a simple but robust methodology to estimate the ML parameters of GG distributions and (2) a Generalized Gama Mixture Model (GGMM). These mixture models are of great value in ultrasound imaging when the received signal is characterized by a different nature of tissues. We show that a better speckle characterization is achieved when using GG and GGMM rather than other state-of-the-art distributions and mixture models. Results showed the better performance of the GG distribution in characterizing the speckle of blood and myocardial tissue in ultrasonic images

    Parametric image restoration using consensus: an application to nonstationary noise filtering

    No full text
    Image quality gets affected by unavoidable degradations. Several techniques have been proposed based on a priori information of the degradation. However, these techniques fail when the underlying parameters cannot be estimated. We propose a method to deal with situations when the underlying parameters are not known. It is based on the consensus achieved by using a set of aggregation functions and a penalty function. The method is tested in the case of a nonstationary Gaussian noise, and the Wiener filter is used to prove this methodology. The results show that the approach is consistent and it achieves comparable results for known parameters

    A maximum likelihood approach to diffeomorphic speckle tracking for 3D strain estimation in echocardiography

    No full text
    The strain and strain-rate measures are commonly used for the analysis and assessment of regional myocardial function. In echocardiography (EC), the strain analysis became possible using Tissue Doppler Imaging (TDI). Unfortunately, this modality shows an important limitation: the angle between the myocardial movement and the ultrasound beam should be small to provide reliable measures. This constraint makes it difficult to provide strain measures of the entire myocardium. Alternative non-Doppler techniques such as Speckle Tracking (ST) can provide strain measures without angle constraints. However, the spatial resolution and the noisy appearance of speckle still make the strain estimation a challenging task in EC. Several maximum likelihood approaches have been proposed to statistically characterize the behavior of speckle, which results in a better performance of speckle tracking. However, those models do not consider common transformations to achieve the final B-mode image (e.g. interpolation). This paper proposes a new maximum likelihood approach for speckle tracking which effectively characterizes speckle of the final B-mode image. Its formulation provides a diffeomorphic scheme than can be efficiently optimized with a second-order method. The novelty of the method is threefold: First, the statistical characterization of speckle generalizes conventional speckle models (Rayleigh, Nakagami and Gamma) to a more versatile model for real data. Second, the formulation includes local correlation to increase the efficiency of frame-to-frame speckle tracking. Third, a probabilistic myocardial tissue characterization is used to automatically identify more reliable myocardial motions. The accuracy and agreement assessment was evaluated on a set of 16 synthetic image sequences for three different scenarios: normal, acute ischemia and acute dyssynchrony. The proposed method was compared to six speckle tracking methods. Results revealed that the proposed method is the most accurate method to measure the motion and strain with an average median motion error of 0.42mm and a median strain error of 2.0 ± 0.9%, 2.1 ± 1.3% and 7.1 ± 4.9% for circumferential, longitudinal and radial strain respectively. It also showed its capability to identify abnormal segments with reduced cardiac function and timing differences for the dyssynchrony cases. These results indicate that the proposed diffeomorphic speckle tracking method provides robust and accurate motion and strain estimation
    corecore