2,088 research outputs found

    Unexpected Perinatal Loss versus Sids-a Common Neuropathologic Entity

    Get PDF
    Objective: To evaluate the involvement of alterations of the central autonomic nervous system, particularly of the brainstem and cerebellum, in a wide set of victims of sudden and unexplained perinatal and infant death

    From Exploratory Tunnel to Base Tunnel: Hard Rock {TBM} Performance Prediction by Means of a Stochastic Approach

    Get PDF
    Tunnel boring machine (TBM) performance prediction is often a critical issue in the early stage of a tunnelling project, mainly due to the unpredictable nature of some important factors affecting the machine performance. In this regard, deterministic approaches are normally employed, providing results in terms of average values expected for the TBM performance. Stochastic approaches would offer improvement over deterministic methods, taking into account the parameter variability; however, their use is limited, since the level of information required is often not available. In this study, the data provided by the excavation of the Maddalena exploratory tunnel were used to predict the net and overall TBM performance for a 2.96 km section of the Mont Cenis base tunnel by using a stochastic approach. The preliminary design of the TBM cutterhead was carried out. A prediction model based on field penetration index, machine operating level and utilization factor was adopted. The variability of the parameters involved was analysed. A procedure to take into account the correlation between the input variables was described. The probability of occurrence of the outcomes was evaluated, and the total excavation time expected for the tunnel section analysed was calculated

    An integrated multiscale approach for characterization of rock masses subjected to tunnel excavation

    Get PDF
    The design of tunnels must be conducted based on the knowledge of the territory. The longer the structure, the larger the area to be investigated, and the greater the number of surveys and tests to be performed in order to thoroughly examine all the relevant features. Therefore, optimization of the investigation process is strongly required to obtain complete and reliable data for the design of the infrastructure. The fast development of remote sensing technologies and the affordability of their products have contributed to proving their benefits as supports for investigation, encouraging the spreading of automatic or semi-automatic methods for regional scale surveys. Similarly, considering the scale of the rock outcrop, photogrammetric and laser scanner techniques are well-established techniques for representing geometrical features of rock masses, and the benefits of non-contact surveys in terms of safety and time consumption are acknowledged. Unfortunately, in most cases, data obtained at different scales of investigations are only partially integrated or compared, probably due to the missing exchange of knowledge among experts of different fields (e.g. geologists and geotechnical engineers). The authors, after experiencing such a lack of connection among the results of different surveys concerning tunnels, propose a multiscale approach for the optimization of the investigation process, starting from the regional scale, to obtain the data that can be useful not only for planning more detailed surveys in a preliminary phase, but also for making previsions on the discontinuity sets that are present in the rock masses subjected to excavations. A methodological process is proposed and illustrated by means of a case study. Preliminary results are discussed to highlight the potentiality of this method and its limitations. Keywords: Tunnel, Multiscale approach, Geological lineament, Non-contact survey, Discontinuity, Digital terrain model (DTM

    Studies of Flexible Barriers Under Debris Flow Impact: An Application to an Alpine Basin

    Get PDF
    AbstractThe aim of this paper is to analyze the most relevant aspects that influence the interaction between debris flow phenomena and protection barriers. The volume of the debris and its lithological nature are conditioning the barrier size and strength. This system is often complicated by environmental and climate influences that need to be taken into consideration as well; therefore, a correct design of a protection barrier system in an alpine basin is a complex procedure that needs to be rationalized. This paper will concentrate on the barrier dimension design proposing a rational scheme of study of the global problem. The application to an Alpine basin is reported

    Reliability-based design for debris flow barriers

    Get PDF
    In the European Union since 2010, the design of any type of structures must comply with EN-1997 Geotechnical Design (CEN 2004) (EC7) referring to engineering projects in the rock mechanics field. However, the design of debris flow countermeasures in compliance with EC7 requirements is not feasible: EC7 uses partial safety factors for design calculations, but safety factors are not provided for phenomena such as debris flows and rock falls. Consequently, how EC7 can be applied to the design of debris flow barriers is not clear, although the basic philosophy of reliability-based design (RBD), as defined in EN1990 (CEN 2002) and applicable to geotechnical applications, may be a suitable approach. However, there is insufficient understanding of interactions between debris flows and structures to support RBD application to debris flow barrier design, as full-scale experimental data are very limited and difficult to obtain. Laboratory data are available but they are governed by scale effects that limit their usefulness for full-scale problems. The article describes an analysis, using the first-order reliability method (FORM), of two different datasets, one obtained through laboratory experiments and the other reflecting historical debris flow events in the Jiangjia Ravine (China). Statistical analysis of laboratory data enabled a definition of the statistical distributions of the parameters that primarily influence debris flow and barrier interactions. These statistical distributions were then compared to the field data to explore the links between flume experiments and full-scale problems. This paper reports a first attempt to apply RBD to debris flow countermeasures, showing how the choice of the target probability of failure influences the barrier design resistance value. An analysis of the factors governing debris flows highlights the applicability and limitations of EN1990 and EN1997 in the design of these rock engineering structures
    • …
    corecore