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Abstract 13 

A channelized debris flow is usually represented by a mixture of solid particles of various sizes 14 

and water flowing along a laterally confined inclined channel-shaped region to an unconfined area 15 

where it slows down and spreads out into a flat-shaped mass. 16 

The assessment of the mechanical behavior of protection structures upon impact with a flow, as 17 

well as the energy associated to it, are necessary for the proper design of such structures which,  in 18 

densely populated areas, can prevent victims and limit the destructive effects of such a 19 

phenomenon. 20 

In the present paper, a simplified analysis of the mechanics of the impact of a debris flow is 21 

considered in order to estimate the forces that develop on the main structural elements of a 22 

deformable retention barrier. 23 

For this purpose, a simplified structural model of cable-like retention barriers has been developed - 24 

on basis of the equation of equilibrium of wires under large displacement conditions, - and the 25 

restraining forces, cable stresses and dissipated energies have been estimated. 26 

The results obtained from parametric analyses and full-scale tests have then been analysed and 27 

compared with the proposed model. 28 
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Nomenclature 1 

 2 

 3 

 4 

A   Cross section of a horizontal cable 5 

tA   Cross section of an equivalent cable representing the 6 

transversal net 7 

)(td   Depth of a generic cable measured with respect to the 8 

upper free surface of the accumulated material 9 

jid
 

Relative vertical distance between cables i and j
 

10 

e   Horizontal distance between the first and the last edge 11 

of a generic cable, measured normal to the cable 12 

E   Young's modulus of the cable 13 

Eb EE ,   Energy dissipated by the brakes and elastic energy 14 

stored in the cables, respectively 15 

tE   Young's modulus of the equivalent transversal cables 16 

representing the net 17 

max,, bb ff
  Generic force and maximum allowable force in the 

18 

brake 
19 

)(th  Height of the accumulated material at generic time t 20 

Bh   Total height of the barrier 21 

0h   Constant height of the debris flow surge 22 

H   Component along the x direction of the tension force 23 

along a cable 24 

gk,     Earth pressure and gravity acceleration coefficients 25 

ii lL ,   Effective length and projected length along the x-axes 26 

of  cable i, respectively 27 

n   Number of horizontal cables in the barrier 28 

p   Constant vertical distance between the horizontal cables 29 

)(xQi   Total horizontal load acting along a generic i-th cable 30 
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jcq ,  , icq  Horizontal load supported by cable j due to load )( izq  1 

acting on cable i and the horizontal load supported by 2 

cable i when all the other cables are loaded by )( jzq  3 

)(xqd   Horizontal load due to the dynamic pressure on the 4 

barrier 5 

),( xdqs   Horizontal load due to the static pressure on the barrier 6 

at depth d 7 

),( tzq i   Horizontal load, at time t, acting directly on the cable 8 

located at vertical co-ordinate iz
 

9 

max,, bb ss
 Generic displacement and maximum allowable 

10 

displacement in the brake 
11 

t   Generic time instant 12 

),( ij zzr   Function defining the horizontal ratio between the 13 

displacements of cable i and cable j (placed at vertical 14 

coordinates iz  and jz , respectively) 15 

),( dxT   Tension force along a cable (in a point having co-16 

ordinate x) placed at the depth d 17 

)(xu   Horizontal displacement of a generic point, with co-18 

ordinate x, of the cable (in the y direction, as shown in 19 

Figure 5) 20 

)2/( lxuu    
maximum displacement of the cable, which occurs at its 

21 

midpoint  
 22 

V  Components in the y direction of the reaction forces 23 

acting at the cable edges   24 

0v   Arrival velocity of the debris flow 25 

z   Generic vertical co-ordinate of the horizontal cable 26 

iz   Generic vertical co-ordinate of the i-th horizontal cable 27 

   Empirical coefficient for dynamic pressure estimation 28 

d   Mass density of the debris flow 29 

   Inclination angle of the slope 30 

Fr   Flow rate of the debris [m
3
/s] 31 
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   Average inclination of the debris deposition behind the 1 

barrier 2 

   Interface friction coefficient between landslide debris 3 

and deposited debris 4 

fT   Duration of impact [s] 5 

 6 

7 



5 

1. Introduction 1 

Debris flows are rapid mass movements, composed of a mixture of grains, water 2 

and air, that develop under the effect of gravitational forces. The amount of 3 

energy involved in such phenomena is enormous and their mobility is such that it 4 

allows them to propagate for several hundreds of meters without losing their 5 

destructive potential. Owing to these characteristics, debris flows have been 6 

ascribed as being among the most dangerous and catastrophic of natural events  7 

[1]. The above cited phenomenon generally originates from collapses (landslides, 8 

erosions, etc.) associated with heavy precipitations due to extreme meteorological 9 

events such as heavy rainfall or rapid snowmelt. The characteristics that identify a 10 

debris flow are: 11 

 A mixture of water and sediments (including sometimes vegetation 12 

debris); 13 

 Unstable and non-uniform flow behaviour; 14 

 High velocity of the mobilized mass and strong impact forces; 15 

 Sudden phenomena of short duration.  16 

Govi et al. [2] found, on the basis of a large number of observations that most of 17 

these phenomena generate in small to medium scale hydrological basins (up to 13 18 

km
2
), around 40% of the observed phenomena develop along channels having a 19 

with a steeper slope than 35° and more than 40% of the occurrences have a 20 

recurring time of over 50 years. Several classification of these phenomena have 21 

been proposed by various authors (Pearson & Costa [3]; Costa [4]; Phillips & 22 

Davies [5]; Meunier [6]; Wan & Wang [7]; Coussot & Meunier [8]; Hungr et al. 23 

[9]; Takahashi [10]). The study of these phenomena is very difficult due to their 24 

short duration and unpredictability, the lack of historical data for a given basin 25 

and the complexity of the involved mechanical phenomena. Post event surveys 26 

allow some of the depositional features to be identified and provide indications on 27 

the maximum flow height. However, they lack information on the development of 28 

the phenomena with time. For this purpose, recursive events have been monitored 29 

out by several authors (Okuda et al. [11]; Marchi et al. [12]; Hürlimann et al. [13] 30 

; Tecca et al. [14]). Most of the studies, which had the aim of determining of the 31 

characteristic features of a debris flow, have been carried out in artificial channels, 32 

where the main involved variables were measured and others were controlled 33 

during the tests (Takahashi [10]; Iverson [15]). However, some uncertainties have 34 
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remained and other scaled models have been developed to simulate deposition 1 

mechanics (Mizumaya and Uehara [16]; Liu et al. [17]; Chau et al. [18]; 2 

Deganutti et al. [19]; Ghilardi et al. [20]; Major [21]) but also to analyze 3 

transportation mechanics and energy dissipation [21]. Iverson [15] demonstrated 4 

that the uncertainties and difficulties in the interpretation of the experimental 5 

results are due to scale effects and to an incorrect artificial reproduction of natural 6 

phenomena. 7 

In this work, a simplified structural model, developed by the Authors for the 8 

safety assessment of retention barriers against channelized debris flows, is 9 

presented and some parametric cases and a full scale test on debris flow barriers is 10 

interpreted through the proposed approach. This model has been developed as a 11 

simplified and efficient tool that can be used to verify of the supporting cables and 12 

foundations of a flexible debris flow barrier. 13 

The present analytical and numerical-based approach has a different aim then that 14 

of a Finite Element Model (FEM). The numerical approach to the problem using 15 

3D FEM is in fact a well-known tool in this context (Ferrero [22]). However, 16 

computational experience using FEM modeling for these kinds of structures has 17 

shown that a large amount of time is needed for the geometrical setup of the 18 

model and several numerical instabilities develop due to the non linearity of the 19 

problem.   The great effort required by FEM for this kind of problem limits the 20 

possibility of investigating different geometrical configurations, load schemes etc. 21 

It is in fact suitable to represent a specific configuration but does not allow 22 

investigation to be made of the influence of debris flow parameter modification 23 

(flow height and velocity, debris density etc.). On the other hand, parametrical 24 

analyses are common practice in geotechnical design because the aforementioned 25 

reasons. Consequently, the Authors decided to develop a simplified method 26 

(which is not yet available to our knowledge) that would allow several 27 

parametrical analysis to be performed in a limited time. Parametrical analysis 28 

should take into account the physical and mechanical features of debris flow 29 

which usually vary during debris development and which are consequently 30 

difficult to define in a deterministic way. It should be noted that  no consideration 31 

has been given to the mechanical and physical behavior of debris flows in this 32 

paper. The proposed model involves the input parameters being acquired through 33 

a preliminary characterization of the design event. However, if the proposed tool 34 
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is adopted, the designer will be able to perform sensitivity analysis that will help 1 

to quantify the influence of parameter variability.  2 

2. Debris flow mechanics  3 

As already mentioned in the introduction, a detailed description of the complex 4 

mechanics of a debris flow is not the scope of this paper. This aspect has been 5 

studied by several authors considering the different phases that can be identified 6 

the debris flow development: the triggering phase [23], the run out phase (e.g. 7 

Hungr and Evans [24]; Pirulli [25], Takahashi [10]) and the deposition phase 8 

(Major [21], Vallance [26]). However, for the scope of this work,  the most 9 

relevant aspect is the run out phase and, in particular, the determination of its 10 

velocity, volume and discharge rate, since debris flow impact power is connected 11 

to its kinetic energy, and to the energy dissipation effects during motion (Cesca 12 

[27]).  13 

The velocity of a debris flow during its run out depends on several factors, such 14 

as: dip of the slope, the water mixture content, the grain distribution etc.. All these 15 

factors determine the relationship between the induced internal stresses and the 16 

deformation in relation to the applied external stresses, which is usually known as 17 

fluid rheology. Since the debris flow is a multi-phase mixture of different 18 

materials, its rheology somewhere falls in between the mechanical elastic 19 

behavior of the solid phase and the viscous behaviour of the liquid phase.  All 20 

these aspects determine the kind of motion regime of the debris, which is mainly 21 

ruled by both inertia and viscosity forces. The well-known Bagnold number, 22 

determined in one of the pioneer works on debris flow rheology carried out by 23 

Bagnold [28], is the ratio between these two components (inertia and stresses due 24 

to viscosity) and can be used to identify different motion regimes. Bagnold used 25 

the term “macroviscous” to indicate a linear regime that is characterized by small 26 

Bagnold numbers, in which the shear stresses behave as in a Newtonian fluid with 27 

a corrected viscosity, and the term “grain-inertia” to indicate a regime that is 28 

characterized by large Bagnold numbers, in which the stresses are independent of 29 

the fluid viscosity but dependent on the square of the shear rate and on the square 30 

of the granular-phase concentration. 31 

A rheological regime, usually termed “collisional”, which is based on the 32 

interaction between particles, during which momentum is exchanged and energy 33 
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is dissipated because of inelasticity and friction, has recently been defined 1 

(Goldhirsch [29], Jenkins and Hanes [30]; Hanes [31]). 2 

Armanini et al. [32] have shown how as both regimes can be simultaneously 3 

present in a debris flow: the behaviour can be reproduced by the kinetic theory in 4 

the proximity of the free surface, where the particle concentration is relatively 5 

small, while a layer dominated by frictional contacts can be observed near the 6 

static bed. 7 

The study of debris flow strains and displacements is conveniently analysed 8 

considering three fundamental physical principles: mass, energy and momentum 9 

conservation, which lead to the driving equations. The above equations can be 10 

solved using several different methods: those based on continuum mechanics (i.e. 11 

the heterogeneous real mass is treated as a continuum) have been widely and 12 

successfully  applied (e.g. Chen and Lee [33]; Denlinger and Iverson [34]; 13 

McDougall and Hungr [35]).  14 

When the debris thickness is far smaller than its extent (measured parallel to the 15 

bed), averaged depth Saint Venant equations can be used because the debris 16 

composition can reasonably be considered constant in a section, due to the limited 17 

height, thus avoiding the necessity of a complete 3-dimensional description of the 18 

flow (Savage and Hutter [36]). 19 

The design of barriers against debris flows is based on the impact forces that are 20 

determined by the sum of the dynamic pressure (which can reach values up to the 21 

order of 10 KN/m
2
) and of the particle collision (which is characterized by values 22 

of 100  KN/m
2
 or more) (Suwa and Okuda [37]). 23 

The dynamic impact can theoretically be estimated assuming an incompressible 24 

fluid hypothesis against a rigid barrier, and can be the assessed on the basis of 25 

momentum conservation for a steady fluid motion (Hungr [38]; Van Dine [39]) 26 

while a theoretical solution for cable-like retention barriers is still not available. 27 

2.1  Forces induced by debris-barrier impact 28 

The pressure produced by the impact of a debris flow on the barrier can be 29 

estimated considering both the dynamic impact pressure and the static pressure of 30 

the deposited debris (Kwan & Cheung [40]). The former can be determined  31 

considering the well-known Bernoulli theorem; the kinetic energy of the flowing 32 

material, 2/2

0vd  , is in fact into a pressure load when the velocity vanishes due 33 
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to the impact.  The dynamic pressure on the barrier can thus be estimated as (Fig. 1 

1a): 2 

2

0)( vxq dd  
 

(1) 

where   is an empirical coefficient that varies between 1.5 and 5, according to 3 

Canelli et al. [41] and which can be assumed to be equal to 2.0 when the barrier is 4 

flexible and drained, the flow regime is granular and there is a lack of  site 5 

specific information, where 0,vd  are the density and the impact velocity of the 6 

debris, respectively. Studies have been carried out to back analyze some natural 7 

debris flow phenomena that have impacted monitored barriers [42] using a multi-8 

stage surge model. However, some of the parameters involved in the analysis 9 

were estimated (i.e. the lateral earth pressure coefficient, the density of the debris, 10 

etc.) while others were measured directly (i.e. front velocity, surge height, etc.). 11 

An extensive analysis on design approaches for debris resisting barriers has been 12 

presented by Kwan & Cheung [40]. 13 

Generally, the debris could hit the barrier in the form of surges which fill the 14 

barrier either continuously or intermittently; the most critical impact scenario on 15 

barrier stability should always be chosen [40]. 16 

The thickness (h0) and velocity (v0) of moving debris surges can be estimated 17 

from debris mobility models using appropriate rheological parameters such as 18 

those recommended by Lo [43]. On the other hand, when the debris starts to 19 

accumulate behind the barrier, a static pressure can be assumed to occur (Fig. 1). 20 

The height of the accumulated material at the generic time t  can be estimated, as 21 

shown in Eq. (2), by equating the volume of the material that arrives after such a 22 

time interval from the slope and the volume of the accumulated material behind 23 

the barrier (Fig. 1), (time t=0 is assumed when the first particle of the debris-flow 24 

impacts the barrier) as: 25 

tghtvth  002)(
 

(2) 

In the above relation ,0h  are assumed to be the constant height of the debris 26 

flow surge and the inclination of the slope behind the barrier, respectively. It 27 

should be noted that, in order to use Eq. (2) it is necessary that 0 .  The static 28 

pressure acting at depth )(td , measured with respect to the upper free surface of 29 

the material (Fig. 1b), can be assessed through the relation reported in Eq. (3), as 30 
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usually occurs in geotechnical science for the assessment of the static pressure 1 

produced at a given depth: 2 

gzthhkgtdkdq d

td

ds  


)(

0 ))(()()(  (3) 

where gk,  are the earth pressure coefficient and the acceleration of gravity, 3 

respectively, while z  is the vertical position of the point under consideration (Fig. 4 

1b). 5 

By considering the barrier made up of n horizontal supporting cables -in the 6 

following assumed to be placed at a constant relative distance of 7 

)1/(  nhp B for the sake of simplicity the pressure load )( ii zq  (assumed to be 8 

constant along each horizontal cable) acting on the i-th cable located at the 9 

vertical co-ordinate 0)1/()1( hnihz Bi   can simply be calculated as in Eq. 10 

(4) (the cables are numbered starting from 1 at the bottom of the barrier), 11 
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(4) 

while Eq. (5) should be used when the i-th cable is located at vertical coordinate 12 

0hzi   13 
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(5) 

In others words, Eqs (4) and (5) enable one to evaluate the pressure exerted 14 

directly on a given cable located at coordinate iz , once its position with respect to 15 

the flowing material and to the accumulated material is known. Eq. (4) is valid for 16 

cables located at a greater height than the thickness of the flowing debris at 17 

different time intervals: the cable is not yet in contact with the debris material for 18 

)2/()( 00

2

01 tghvhztt i  and it is therefore unloaded; for the 19 

)2/( 00

2

21 tghvzttt i interval  the i-th cable falls inside the portion of the 20 

barrier that impacts with the flowing debris while the cable for 2tt  is in contact 21 

with the material at rest behind the barriers. Similarly, Eq. (5) allows one to 22 
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estimate the pressure on a cable located at a coordinate iz  which is lower than the 1 

thickness of the flowing material. 2 

Since the cables are placed at a constant vertical distance of p , the distributed 3 

load (assumed, for the sake of simplicity to act in a horizontal plane) acting on a 4 

single cable of unit horizontal length is given by Eq. (6)  5 










12),(

,12/),(
),(),(

nitzqp

nitzqp
tdqtzq

i

i

tit

 

(6) 

The above and following relations are obviously not restricted by the hypothesis 6 

of a constant p. More general relationships can be obtained for variable relative 7 

cable distances. However, for the sake of analytical simplicity, such a hypothesis 8 

has been introduced to illustrate the analytical model. 9 

While calculating the pressure acting on the barrier, the model does not take into 10 

account the deformation induced by the pressure exerted by the flowing granular 11 

material; since the case of a rigid barrier is the most critical in the design of such 12 

retention structures, the mitigation of the pressure, due to the barrier deformation, 13 

can reasonably be neglected from the safety point of view.  This hypothesis holds 14 

true since the maximum transversal displacement of the barrier, as inferred from 15 

both experimental and numerical results, is usually much lower (10 - 15%) than 16 

the barrier extension (see Par. 4.2).  17 



(b)



(a)



 18 

Fig. 1. Debris accumulation behind the barrier and corresponding loads at a 19 

generic time instant. 20 

 21 

The assumption of a constant load along the cable is an acceptable simplification 22 

from the engineering safety point of view; this hypothesis allows one to treat the 23 

problem as a two dimensional one, characterised by governing equations that can 24 



12 

easily be handled for a simplified design of the retention barrier, as will be shown 1 

hereafter. 2 

 3 

3. Mechanics of cable-like retention barriers 4 

A simplified structural model for the assessment of the forces that develop in the 5 

retention barrier against a channelized debris flow can be formulated taking into 6 

account the typical structural lay-out of such elements.  7 

The typical channelized debris flow barrier has an almost trapezoidal shape and is 8 

anchored to the ground (generally at the channel sides) by means of grouted 9 

anchors or cables.  The main structural cables are horizontal and their number 10 

depends on the overall height and on the expected flow parameters (Fig. 2).  11 

 12 

Fig. 2. Typical structural lay-out of a net retention barrier against debris-flow. 13 

The single element features and the geometrical lay-out can vary according to the  14 

make and model of the barrier and to particular installation conditions (channel 15 

size, depth, etc.). The load cells referred to here are those that were used during 16 

on site tests carried out at the Pieve di Alpago (BL, Italy) test site (see Section 4 ). 17 

 18 

To each horizontal cable can be connected a dissipating element that would limit 19 

the amount of force transferred to its foundations during the debris flow impact 20 

(Fig. 3). 21 

The structural net is typically formed by interconnected steel rings of 22 

homogeneous diameter (typically 30-50 cm); sometimes another net with smaller 23 

diameter openings is overlaid to the first one to retain smaller debris particles. 24 
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  1 

Fig. 3. Particular of the barrier foundations, dissipating elements and supporting 2 

cables. Single elements are variable with the make and model of the barriers 3 

available on the market. 4 

 5 

 6 

Fig. 4. Example of a debris flow barrier (installed at the Pieve di Alpago (BL, 7 

Italy) test site, see Section 4 ). 8 

 9 

From the observation of Fig. 2 it can be noted that the main resisting elements are 10 

the horizontal cables fixed at their extremities to the foundations, while the net has 11 
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the role to retain the flowing solid particles and to transmit the developed forces to 1 

the above described cables. 2 

The governing equation of the equilibrium of a loaded cable can be usefully 3 

employed to describe the mechanical behaviour of such a structural system. 4 

Let us consider the barrier constituted by several horizontal cables mounted at a 5 

reciprocal constant distance equal to p . The i-th cable - having its extremities 6 

fixed at the points A and B - is characterized by a horizontal length equal to il , 7 

while its total effective length (when elongated under loading) is assumed to be 8 

equal to iL  (Fig. 5). The distributed load acting on such a cable is assumed to lie 9 

in an horizontal plane and to be constant with respect to the x co-ordinate at a 10 

fixed time t. The load is, however, variable with time, since the depth )(td  of the 11 

cable with respect to the top surface of the flowing material increases with t (Fig. 12 

1b). 13 

 14 

3.1. Formulation of the equilibrium equation of a cable-like structure 15 

The present model, for sake of simplicity, considers the main resisting cables to 16 

be loaded only in the horizontal direction by the forces produced by the debris 17 

impact on the barrier, while the resultant of the vertical forces transmitted by the 18 

connecting net to the single cable is considered as negligible. As a consequence, 19 

only the deformation of the cables in the horizontal plane will be assumed to be 20 

significant in the resistant mechanism of the structure. 21 

Each cable of the barrier is assumed to have fixed extremities, i.e. the end points 22 

of the cables are prevented to displace by some foundation system which 23 

mechanical behavior is beyond the scope of the present research. 24 

 25 
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Fig. 5. Scheme of the top view of a single cable under the forces produced by the 1 

impact of a debris-flow, with related geometrical and static quantities. 2 

 3 

Starting from the equilibrium equation (Eq.(7)) of the i-th cable in differential 4 

form at the time instant t  [44], 5 

i

i

i

ii

H

tdq

H

tzq

dx

tud ),(),()(
2

2

  
(7) 

after a double integration and by assuming a constant distributed load at a given 6 

time instant )(dqi  (the dependence on time t for sake of brevity is not explicitly 7 

indicated in the following relations) and the two extremities of the cable to be 8 

located at the coordinates )0,0(),( yx  and )e,(),( ilyx   (referred to the 9 

horizontal plane containing the cable, Fig. 5) corresponding to the points A and B, 10 

respectively, the cable equation can be explicitly written as (Levy [45]): 11 

  x
l

xlx
H

dq
xu

i

i

i

i
i

e

2

)(
)( 2   

(8) 

where )()( dhzqdq bii   is the constant horizontal load acting along the cable 12 

under consideration placed at a depth d  below the actual top free surface of the 13 

flowing material, while iH  is the constant component along the x direction of the 14 

tensile axial force )(xTi  in the cable [44]. Such a quantity can be obtained by 15 

imposing the effective length of the cable to be equal to iL  through the equation: 16 

 
il

ii dxxuL
0

2 )('1

 

(9) 

which is obtained by integrating the trivial geometric relation 17 

)('1 222 xudxdydxdL ii   (since )(' xudxdy i ) that quantifies the 18 

length of a generic curve which shape is described through the displacement 19 

relation )(xui . 20 

By denoting with  f  the quantity iiti Hlqf 8/2  (see Fig. 5, where the 21 

geometrical interpretation of  f  is represented, i.e. the maximum transversal 22 

displacement measured with respect to the straight line A-B) and expanding in 23 
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Taylor series the expression of the integrand function in Eq. (9) (the dependence 1 

on the depth d  is omitted in the notation for simplicity), one can obtain: 2 
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The sought term iH , which can be demonstrated from equilibrium considerations 3 

to be independent of x, can be finally obtained by using Eqs (8-10): 4 
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where the particular case characterised by 0e  , has been considered. 5 

The tensile force )(xTi  acting along the cable can be also explicitly obtained 6 

through the following relation (Levy [45]): 7 
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by projecting the force
 iH

 
along the tangential direction of the cable in the point 8 

of interest or, in other words, by calculating  the product dxdsHi / , where s  9 

denotes the curvilinear abscissa along the cable under consideration (Fig. 5). 10 

At the two extremities of the cable, the components of the reaction forces in the y 11 

direction are given by the trivial value: 12 
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(13) 

The elastic deformation of the cables under loading must be also considered in 13 

order to explicitly write the total effective length iL ; in such a case the problem is 14 

characterised by another source of nonlinearity due to the dependence of the cable 15 

length iL  on the tensile force )(xTi  which depends itself on iL . 16 

Under limited deformation – 10-15% of the cable length - it can be assumed that 17 

the tensile force )(xTi  is approximately equal to iH  (which does not depend on x) 18 

all along the cable,  i.e. .)( constHxT ii   (since dxds  ); in such a way the 19 

effective length of the cable (assumed to obey the linear elastic Hooke’s law) iL  20 

can be written as: 21 
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The limited deformation of each cable is considered in order to maintain the 1 

appropriate functionality of the structure. According to Kwan & Cheung [40] the 2 

deformable barrier should sustain structural integrity for a deformation in the 3 

direction of the debris impact not lower than 10% of its total length and, in order 4 

to retain a considerable amount of material behind its deformed shape, it is 5 

suggested that the final deformation should not be greater than 15% of its total 6 

length.   7 

The last relation used together with Eq. (11) allows to calculate – by solving the 8 

obtained non-linear problem – the effective cable length and the corresponding 9 

force iH  at the equilibrium state. The above assumption can be justified by 10 

considering that even for a cable having  a noticeable transversal deformation 11 

such as ilf  1.0 , its effective length is ii lL  027.1  (see Eq. (10)) and the axial 12 

force value along the cable lies in the range iii HxTH  08.1)( (obtained by 13 

using Eqs (11) and (13)), while for ilf  2.0 , ii lL  107.1  and 14 

iii HxTH  28.1)( .  It must be also recalled that, in debris flow net barriers, the 15 

presence of brakes is quite common; such a devices operate by dissipating energy 16 

and by increasing the cable length once the maximum allowable force of the brake 17 

is reached. Such an increased length produces a beneficial effect by inducing a 18 

decrease of the tension forces in the cables, while neglecting the brakes usually 19 

leads to a conservative design of the barriers.  Such a topic will be discussed in 20 

Sect. 3.3 where the brakes modelling is presented. 21 

The maximum displacement of the i-th cable occurring at its midpoint in the 22 

particular case 0e  , is equal to iiiiii Hlqlxuu 8/)2/( 2  (see Eq. (8)). The 23 

relation between the distributed load iq  and such a maximum displacement can 24 

thus be written from the solution of the equations below: 25 
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where the relation for the approximate cable effective length evaluation (Eq. 14), 1 

has been used together with Eq. (11);  finally the sought  relation )( ii uq  (see Eq. 2 

(151)) can be explicitly obtained: 3 
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 4 

3.2. Effect of the net connections between cables 5 

Since the horizontal cables are connected by the barrier net, it can be assumed that 6 

they are joined together by ‘equivalent’ vertical cables having the effect to 7 

distribute a portion of the load directly applied to each horizontal cable to the 8 

adjacent ones (Fig. 6a). The differential equilibrium equation Eq. (7) for the i-th 9 

horizontal cable can thus be modified as: 10 
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in which )(),( xqxq ciic  represent the portion of the “direct” load )(xqi  acting on 11 

cable i transferred to the adjacent cables and the “indirect” loads transmitted to the 12 

cable i from the other loaded cables, respectively, i.e.: 13 
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where )(, xq ji  is the “indirect” load carried by the cable j when the “direct” load 14 

)(xqi  is acting on the cable i, while  )(, xq ij  is the “indirect” load carried by the 15 

cable i when the “direct” load )(xq j  is acting on the cable j. 16 

In other words, the load )(xqic  represents the total fraction of the “direct” load 17 

acting on the cable i  carried by all the other cables ij  , while )(xqci  represents 18 

the sum of the portions of the “direct” loads acting on all the other cables ij   19 

transferred to the cable i . 20 
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As previously stated, for sake of simplicity, it can be assumed the loads 1 

)( and )(),( xqxqxq ciici  to be constant along the x-coordinate and acting on the 2 

horizontal plane containing each cable.  The problem is now to estimate the loads 3 

jiq ,  and  ijq ,  in order to rewrite the equilibrium condition, given by Eq. (17), with 4 

the proper effective total transversal load  ciici qqq  .  Due to the load-5 

maximum deflection relationship given by Eq. (16), the loads jiq ,  and ijq ,  in Eq. 6 

(18) can be evaluated once the maximum displacement jiu ,  of the cable j 7 

(produced by the distributed load iq  acting on cable i, Fig. 6a, c) or the maximum 8 

displacement iju ,  of the cable i (produced by the load jq  acting on cable j, Fig. 9 

6d) are known. 10 

It should be recalled that, in the real case, the cables in the barrier are not only 11 

subjected to horizontal loads but also to vertical ones due to the effect of the 12 

transversal net connecting them (see Figs 2-4). In a general case, by considering a 13 

distributed load acting on a single inclined plane along the whole cable, the 14 

deflection of a single wire takes place in a plane containing the cable extremities 15 

and the load direction, i.e. the present model can still be applied but in a different 16 

plane from the horizontal one. 17 

It must be also considered as the vertical components of the forces acting along a 18 

single cable are significant only for the uppermost one, since the lower and the 19 

intermediate cables of the barrier are usually either restrained by the channel 20 

bottom or symmetrically surrounded by other cables, with the consequence of 21 

being subjected to a simple nearly horizontal force.  22 
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 1 

Fig. 6. Scheme of the forces developed in cables j for a load acting on the cable i 2 

(a); horizontal cable under a concentrated load (b);  simplified model for the 3 

assessment of the load carried by the cables adjacent to cable i  for a load iq
 4 

acting on it (c, d). 5 

 6 

By indicating with jiu ,  the maximum displacement occurring in cable j when the 7 

cable i shows a maximum displacement equal to iu ,  an influence function 8 

1),(0  ij zzr  (Fig. 6c, d) can be written in order to correlate the above 9 

quantities as,  10 

iijji uzzru  ),(,  (19a) 

the value of the distributed “indirect” load acting along the generic cable j 11 

transmitted from the cable i can be expressed as: 12 
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The above relations can be obtained by writing the equilibrium condition for unit 13 

cable length i

n

j ji qq  1 ,  , and the 1n  displacements relationships between the 14 

cable i and the remaining cables ij  : 15 
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 33

),( jiji uzzru        with    niij ,..,1,1,..,3,2,1   (20) 

Eq. (20) correlates the value of the maximum displacement of the cable i with 1 

respect to the cable j by mean of the function ),( ij zzr . In other words, the above 2 

relations express the maximum deflection of the cable i  by using the maximum 3 

deflection of the cable j multiplied by the influence function ),( ij zzr . 4 

Therefore, since there exists a direct relation between the distributed load acting 5 

on a cable and its maximum displacement (Eq. (16)), the load acting on a generic 6 

cable can be obtained once its maximum deflection is known. 7 

It can be observed that the function ),( izzr  is representative of the mechanical 8 

properties of the vertical ‘equivalent’ cables connecting the horizontal ones: in 9 

fact, if the net connected to the horizontal cables is very weak, when the cable i  is 10 

displaced by a certain amount the displacements in the other connected horizontal 11 

cables would result as depicted in Figs 6c, d, with a rapid decrease of the 12 

displacements values for an increasing vertical distance from the cable i. On the 13 

other hand, in the case of a strong connecting net, the displacements of the cables 14 

would be as depicted in Fig. 6a, with a lower reduction effect as the vertical 15 

distance from the displaced cable i increases. 16 

The governing equations (7) can be rewritten, using the above relations, as: 17 
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(21b) 

that represents a system of nonlinear second order ordinary differential equations 18 

with )2/(),2/( 3333

iiijjj lxuulxuu   and  the coefficient j  = 1.0 if 0jq  19 

and 0j  if 0jq . The last cited coefficient needs to be introduced in order to 20 
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take into account for the possibility that not all the cables are loaded at the same 1 

time.   2 

It must be underlined as, in the above equations, any inertial effect is neglected 3 

since the mass of the retention barrier is very small and the horizontal acceleration 4 

of the cable and of the flowing material in contact with it can be supposed to be 5 

low during the whole loading process. 6 

The above introduced function ),( ij zzr  can be reasonably assumed in the form: 7 

  jim

ij

ij

zz
zzr

1

1
),(


      where    

 1*ln

)ln(






i

ji
zz

c
m  

(22) 

in which czzr i )*,(  is the value attained by the function ),( ij zzr  at the vertical 8 

coordinate *zz j   (i.e. for a cable placed at a relative distance from cable i equal 9 

to ii zzd  ** ) while the unit value of ),( ij zzr  is attained at ij zz   (Fig. 7). 10 

The assumed ),( ij zzr  indicates that the relation between the displacement of 11 

different horizontal cables depends on their relative vertical distance jid  and on 12 

their reciprocal position. It can be observed that ijji mm   due to the non-linear 13 

force-displacement relationship (see Eqs (16) and (19b1)). This is due to  the 14 

difference between the  relative displacement arising in cable i when cable j is 15 

subjected to a given displacement, and the relative displacements arising in cable j 16 

when cable i is subjected to the same displacement. 17 

The function  ),( izzr
 
, if properly tuned through its coefficient ijm , can represent 18 

the relation between the displacements of two connected cables.  19 

 20 
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Fig. 7. Assumed pattern of the function ),( ij zzr  for different values of the 2 

exponent m and for 4iz  in Eq. (22). 3 

 4 





 5 

Fig. 8. Scheme of a vertical section of the barrier; the horizontal cables are 6 

represented by filled circles. 7 

 8 

The determination of the function ),( izzr  can be achieved by considering the 9 

mechanical behaviour of the transversal midsection of the barrier (Fig. 8). The 10 
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equilibrium condition in the horizontal direction for the i-th cable can be written 1 

as: 2 
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where i  is the strain in the vertical cable connected to the horizontal cable i. 3 

On the other hand the relation between the applied load and the maximum 4 

transversal deflection of the cable is given by 
34)3/64( iiiii ulAEq   (see 5 

Eq.(16)). The above equilibrium equations (23) can thus be rewritten as: 6 
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(24) 

Eq. (24) simply states the equilibrium of the load acting on the cable under study 7 

and those deriving from the other connected cables, expressed by means of their 8 

maximum horizontal displacements. 9 

Once the maximum transversal deflection ku   of the k-th cable is known, the 10 

maximum transversal deflections of the other cables can be obtained by the 11 

solution of the system of nonlinear equations ( see Eq. (24)). 12 

The solution of such a system is very awkward and does not allow an easy 13 

analytical treatment to get sought values. For such a reason the determination of 14 

the solution can be obtained through a numerical method; in the present paper an 15 

iterative evolutionary algorithm belonging to the Genetic Algorithm (GA) 16 

approaches is applied (Goldberg [46]; Gen and Cheng [47]). 17 

In many physical problems, the solution of their mathematical formulation is often 18 

quite difficult to be determined by applying classical approaches.  An increasing 19 

interest in a class of algorithms known as Genetic Algorithms (GAs), which 20 

operate by simulating the natural evolutionary processes of life - the Darwinian 21 

survival of the fittest principle is applied by iteratively improving the current 22 
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solution [46], [47], has been observed during last decades.  Such algorithms 1 

represent random stochastic methods of global optimisation, and are used to 2 

minimise or maximise a chosen objective function suitable for a given problem.  3 

Genetic algorithms have successfully been applied to analyse several problems 4 

such as structural performance optimisation (Gantovnik et al. [48]; Brighenti [49]; 5 

Brighenti et al. [50]) and material design and parameters identification (Zohdi 6 

[51]) as well as several non-structural problems. 7 

By using the above cited biological-based algorithm approach, the fulfilment of 8 

some conditions related to a desired objective function can be approximately 9 

imposed; in the present case the objective function to be minimised can be 10 

assumed to be represented by the total error tote  in satisfying the equilibrium 11 

equations of the system (24), i.e.: mintote  12 
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(25) 

In Fig. 9 the flow-chart of the developed Genetic Algorithm used to minimize the 13 

errors expressed by Eq. (25) is reported. As can be observed, several initial 14 

random generations of the sought solution represented by the exponents ijm  are 15 

required (initial population made of M individuals). Performing the fitness 16 

evaluation of each individual (quantified through the violation of the equilibrium 17 

equations measured by tote ), the highest ranking results can be identified and used 18 

for subsequent crossover and mutation operations to be carried out in order to get 19 

a new offspring of new individuals to be treated again as the previous one 20 

(Brighenti [49]; Brighenti et al. [50]).  By repeating the above process, in an 21 

iterative way, up to the fulfillment of a given error tolerance,  the numerical 22 

solution tends to the true solution of the problem. 23 

 24 

 25 
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Fig. 9. Flow chart of the Genetic Algorithm used for the solution of the system 2 

given by Eqs (25). 3 

 4 

As an example, the solution obtained by the GA in the case of 11 equally spaced 5 

cables having the same mechanical properties (cross section area, Young modulus 6 

and equal length) in which the sixth cable is displaced by a unit quantity ( 15 u ) 7 

is shown in Fig. 10.   8 

 9 

It can be observed as the deformed pattern, obtained through the GA approach, is 10 

reasonably correct and that the corresponding exponent 5jm  of the ),( 5zzr j  law, 11 

evaluated for each couple of cables by considering the sixth cable as the reference 12 

one, is variable in the range 0.3-0.8 (see dashed line in Fig. 10). 13 



27 

0 0.2 0.4 0.6 0.8 1

horizontal displacement u (m)

0

2

4

6

8

10

v
e
rt

ic
a
l 

c
o

o
rd

in
a
te

, 
z 

(m
)

0 0.2 0.4 0.6 0.8 1

exponent m 

m

u

m

 1 

Fig. 10. Deformed pattern of  10 horizontal identical cables, joined by vertical 2 

cables, obtained through the GA; the corresponding exponent m of the ),( 5zzr j  3 

law (Eq. (22)) is also reported (dashed line). 4 

 5 

It can be observed as the particular case of totally independent cables can be 6 

simulated by assuming jim  in the expression of ),( ij zzr  (Eq. (22)); in such 7 

a particular case the differential equations become uncoupled and can be written 8 

as: 9 
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 10 

Finally, since the solutions of the equilibrium equations given by Eq. (8) can be 11 

observed to be characterised by the same patterns scaled by the value of the 12 

applied uniform load, the above Eqs (21) can be written by considering only  the 13 

central maximum displacement for each cable, i.e. 14 
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In other words, the system of cables is assumed to be governed by n  independent 1 

variables, iu , that is to say that every cable is completely described by one single 2 

parameter (degree of freedom) corresponding to its central and maximum 3 

horizontal displacement iu . 4 

As a representative example, at the generic time instant t at which we assume to 5 

have 0)(1 tqt , 0)(2 tqt , 0)(3 tqt , while 0)(...)()( 54  tqtqtq tntt , in the 6 

case of cables having equal length l , cross section area A  and elastic modulus 7 

E , the system of governing nonlinear equations becomes: 8 
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The solution vector u  of the above system contains the maximum displacements 9 

of the cables, i.e.   n
T uuuuu ...4321u  at the time instant t at which 10 

the acting loads are considered. 11 

The resulting system of non-linear differential equations (25) can be observed to 12 

be characterised by decoupled equations, since the effective coupling between the 13 

horizontal displacement is approximately accounted for by the relation given by 14 

Eq. (19a) which must be assessed from the value of the exponent m. 15 

 16 

The above described mechanical model has been implemented in a simple in-17 

house made Fortran code operating in two phases: i)  determination of the 18 

function  ),( ij zzr
 
(defined through the exponents ijm ) by the knowledge of the 19 

mechanical and geometrical characteristics of the horizontal cables and of the 20 

‘equivalent’ vertical ones (representing the net) by using the Genetic Algorithm; 21 

ii) assessment of the displacements and forces in the deformed barrier in the time 22 
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domain (corresponding to the time interval of the debris impact on the structure), 1 

by using Eqs (8, 11, 13) calculated at discrete time intervals into which the total 2 

computation time has been subdivided. Obviously, the second phase of the 3 

calculation requires the evaluation of the external loads acting on the barrier 4 

(through Eqs (1-6))  throughout the entire duration of the debris flow 5 

phenomenon. 6 

 7 

3.3. Modelling of the brake devices 8 

As recalled at the beginning of the paper, real barriers are usually provided by 9 

brake system that enables to dissipate energy and to increase the cable length by 10 

allowing a beneficial reduction of the tension in the horizontal cables. 11 

Usually, such devices becomes effective when the maximum tensile brake force is 12 

attained during the loading process; after that, the brake maintains such a 13 

maximum characteristic force and dissipates energy, up to the development of the 14 

maximum brake elongation. Once such maximum brake stroke is reached, the 15 

device loses its function and the force in the cable starts to increase again. 16 

The force-displacement relationship for the brake device placed on the cable i can 17 

be written as: 18 
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where max,max, ,,, bbbb ssff  are the generic force, the maximum allowable brake 19 

force, the generic displacement and the maximum brake displacement, 20 

respectively.   In order to take into account such a mechanical behaviour, the 21 

above formulated model can be modified as follows: i) check if the force in a 22 

generic cable reaches the maximum allowable brake force, max,bf ; ii) if the 23 

previous condition is fulfilled (ie. max,bi fT  ) increase the cable length by a small 24 

fraction bs  of the original cable length in order to obtain the new effective cable 25 

length,    iiibii AEHslL /1 ; iii) determine again the force in the cable 26 

with such a new length by using Eqs (11, 12); iv) check whether the new force is 27 

lower than max,bf  otherwise go to step ii) and increase again the cable length. 28 
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Repeat the above procedure until the fulfilment of the condition max,bi fT   or 1 

continue without any other modification if the maximum brake elongation max,bs  2 

has been reached. 3 

Finally, the energy dissipated by the brake during its service can be easily 4 

obtained as: 5 

bbb sfE  max,  (30) 

 6 

4. Numerical applications, experimental validation 7 

and discussion 8 

4.1. Parametric numerical examples 9 

In the present section a representative example of retention barrier is considered 10 

and solved through the developed model, in order to simulate its mechanical 11 

behavior by varying some parameters of the barrier itself and of the debris flow. 12 

In particular, the effect of the stiffness of the net connecting to the horizontal 13 

cables and, for a given barrier configuration, the influence of the debris flow 14 

velocity 0v  are considered. 15 

The parameters of the flowing debris and those of the barrier are the following: 16 

8.0k ,  0.2 , mh 7.00  , º40 , mpmhB 0.1,0.5  , 17 

mskNf bb 5.0,60 max,max,   while the transversal cables representing the net have 18 

been assumed to be characterized by the ‘equivalent’ cross sectional area equal to 19 

the following values: 2222 200,50,10,5.0 mmmmmmmmAt  .  In order to 20 

investigate the effect of the debris flow velocity (by assuming for such a case 21 

25.0 mmAt  ), the following values have been considered: 22 

smsmsmv /0.8,/0.4,/0.20  . The geometry of the barrier is reported in Fig. 11a 23 

(the cable No 1 located at 0z  is assumed to be fixed, i.e. it does not undergo 24 

any significant displacement), while in Fig. 11b  the scheme of the so-called drag 25 

force df  – occurring when the allowable volume for the debris accumulation is 26 

completely filled by the flowing material – is represented when the flow continues 27 

to take place above the barrier.  28 
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 1 

 

 

Fig. 11. Geometrical dimensions of the considered barrier (a) and scheme of the 2 

drag force occurring when the debris flow continues above the barrier (b) 3 

(dimensions are expressed in m). 4 

 5 

In Fig. 12 the effect of the different values of the cross section of the vertical 6 

cables in presented. In particular in Fig. 11a the maximum tensile force in the 7 

cable during the whole impact period of the debris against the barrier is presented; 8 

as can be noted the maximum tensile force reduces by increasing the stiffness of 9 

the net and such a maximum force becomes almost identical for all the cables. On 10 

the other hand, for a weak net the cables are subjected to very different maximum 11 

force values which are also higher than those calculated with strongest nets. The 12 

case of a barrier without brakes (with 250mmAt  ) is also reported; the forces in 13 

the cables are obviously much higher than those obtainedfor the same barrier with 14 

the brakes. 15 

In Fig. 12b the energy dissipated by all the brakes during the impact is 16 

represented.  As it can be noticed,  the total final amount of dissipated energy 17 

decreases when the net stiffness increases since the forces occurring in the cables 18 

are lower when the net is stiffer and therefore the brakes do not reach their final 19 

allowable stroke. In Fig. 12c, d  the total elastic energy stored in the barrier and 20 

the sum of the total elastic and dissipated energy are represented vs time, 21 

respectively. The trend shown by the curves for different net stiffness is in 22 

accordance with the forces developing in the cables during the phenomenon. It 23 

can be also observed that, after reaching the complete filling of the barrier (see 24 

Fig. 11b), the phenomenon reaches a steady state and the above quantities remain 25 

constant with time. 26 
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In Fig. 13 the deformed pattern of the barrier at the time t=1s is represented for 1 

the four different transversal nets; it is apparent, once again, the load distribution 2 

effect of the transversal net on the horizontal cables of the barrier. 3 
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Fig. 12. Barrier with different stiffness of the superposed steel net: maximum 5 

tensile force in the cables (a), dissipated brake energy of the barrier (b), elastic 6 

energy of the barrier (c) and total (elastic + dissipated) energy of the barrier (d) 7 

vs the time t. 8 
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Fig. 13. Deformed pattern of the barrier with different stiffness of the superposed 1 

steel net at the time t=1s: case of 25.0 mmAt   (a), 210mmAt   (b), 250mmAt   2 

(c) and 2200mmAt   (d). 3 

 4 

Finally the effect of the debris flow surges velocity is herein considered. In Fig. 5 

14 the maximum tensile force attained in the different cables of the barrier is 6 

represented for the three assumed debris flow surges velocity 7 

( smsmsmv /0.8,/0.4,/0.20  ). It appears as the force in the bottom cable (No. 8 

2) is not influenced by 0v  since the static load produced by the accumulated 9 

material prevails over the dynamic force; on the other hand, the velocity influence 10 

becomes relevant for the cables placed at higher levels. In Fig. 14b the total 11 

amount of dissipated energy is represented; it appears that such total energy at the 12 

end of the phenomenon is the same for the different velocities since all the brakes 13 

reach their maximum allowable sliding length. In the case of  higher velocities of 14 

the flow surges, the maximum brakes displacement  is reached in a shorter time 15 

with respect to lower velocities. 16 

 17 
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Fig. 14. Effect of the debris flow velocity. Maximum tensile forces in the cable 1 

during the debris impact (a) and total energy dissipated by the brakes vs the time t 2 

(b) for different values of  0v . 3 

 4 

 5 

4.2. Simulation of a full scale test of a retention barrier 6 

In order to assess the reliability of the proposed analytical model, the simulation 7 

of a full scale test on a barrier is considered hereafter. 8 

The test was carried out inside a limestone quarry located in the Pieve d’Alpago 9 

district (Belluno province, Northeastern Italian Alps); the artificial channel was 10 

built by re-shaping an existing natural impluvium and the barrier was located at its 11 

bottom (Fig. 4). The obtained artificial channel was 2 m large and 48 m long, with 12 

an average slope of 40°. The material used to simulate the flow was constituted by 13 

well-graded limestone blocks with diameter ranging from few cm to 1.5 m. Due to 14 

the particular geometry of the channel, to the nature of the material and to the 15 

machinery used to mobilize it, it was not possible to keep the material saturated; 16 

however, the effects on the barrier in terms of deformation and forces were in 17 

good agreement with other small scale and large scale test results available in 18 

bibliography  (Davies [52], Iverson [53], Canelli [41]).    19 

During the test, both deformation and horizontal cable forces were measured 20 

using photogrammetric techniques and load cells, respectively. The 21 

photogrammetric restitution was based on the pictures taken by a couple of frontal 22 

high definition camera that shot at a speed of 23 frame per second. The load cells, 23 

with a maximum measurement range of 1000 kN, were mounted on each of the 24 
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five horizontal cables as depicted in Figure 2 and their data were recorded at1Hz 1 

frequency. 2 

The registered flow velocity was 2.51 m/s on average with measured peaks of 9 3 

m/s, the total volume stopped at the barrier was of approximately 400 m
3
, the 4 

average flow height 0h  was equal to 0.7 m while the material density was 5 

estimated in 1790 kg/m
3
. The test came to the end with the filling up of the whole 6 

barrier, no overflow was allowed in order to preserve the safety at test site. 7 

The structure under consideration is characterized by an average span of about 8 

17.00 m while its height is equal to 4.00 m; it is composed by four main 9 

horizontal double steel cables (6x19 class according to UNI EN 12385-4) having 10 

diameter 20 mm, fixed at the extremities to foundations grouted inside the 11 

channel shoulders. The four horizontal main cables are mounted at a relative 12 

vertical distance p equal to about 1.33 m (Fig. 2). A steel ASM 3-4- 350/200 ring 13 

net made by 350 mm rings, connected at four point contact is linked at the 14 

horizontal cables (Fig. 3). The rings are formed by a single steel wire (1380 15 

N/mm
2
 minimum tensile strength) having a diameter  3 mm and rolled up in 10 16 

loops and 2 spirals.  The lower cable was fixed at the bottom surface of the 17 

channel in the real test, by means of several anchors; in order to account for the 18 

effect of those restrains in the analytical model, since the proposed simplified 19 

analytical model does not allow the application of restrain along the main cables, 20 

a cable with a larger cross sectional area (20 times the area of the others) was 21 

adopted. This assumption implies that the horizontal displacements of the lower 22 

cable are negligible and its calculated axial forces are omitted for the comparison 23 

between real case and numerical results.  24 

The analytical model has been solved by assuming 5.1 , 5.0k  to describe 25 

the loads on the barrier; the value of the empirical coefficient   and of the earth 26 

pressure coefficient k were recovered through back analysis, considering the 27 

indications of  Canelli et al. [41] and Bugnion et al. [54] while the exponent m of 28 

the functions ),( ij zzr  relating each cable with the others - i.e. for the assessment 29 

of the cables interaction - have been calculated according to the above described 30 

GA procedure.  31 

The values of the coefficients necessary for the evaluation of the forces induced 32 

by the debris flow against the barrier (Eqs 1, 3), have been performed by 33 

following the considerations below.  34 
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Bugnion et al. [54] have performed several tests of flow against obstacles and 1 

computes the α value. They shows that 2 is the maximum value. For this reason 2 

the Authors considered this value in the initial phase of development of the work.  3 

For the coefficient of earth pressure k, the value k = 0.5 was chosen because Kwan 4 

and Cheung [40] suggested a maximum value of 1 in undrained condition but we 5 

could observe a condition of partial saturation during the flow and of good 6 

drainage during the impact of the debris against the barrier. Therefore, the friction 7 

angle of the debris accumulation behind the barrier was originally  assumed 8 

between 20° and 30°, converging to the value of 20° through a back analysis 9 

procedure developed in order to better fit the experimental results. 10 
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Fig. 15. Comparison between experimental and analytical results of: (a) tension 12 

forces in the horizontal structural cables vs. time; (b) maximum deformed shape 13 

of the barrier at the midspan vertical section.  14 

 15 

In Fig.15 (a) the forces  measured in each cable (identified through its co-ordinate 16 

position z) during the test are plotted against time, together with those determined 17 

using the proposed analytical model.  In Fig. 15 (b) are reported both the shape of 18 

the deformed barrier measured at the central vertical section at the end of the test 19 

and that calculated using the proposed model.  Although some differences 20 

between experimental and numerical results were obtained, especially for what it 21 

concerns the barrier deformation, the induced state of traction in the cables are in 22 

good agreement. This is possibly due to the initial state of stress in the cables, 23 

which is originally applied during the structure assembly; this pretension is not 24 

influencing the final state of stress induced by the debris flow impact while it 25 
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does, instead, influence its deformation particularly at the beginning and at the 1 

end of the loading process. Furthermore, the lower portion of the barrier (lower 2 

horizontal cable) is free to deform along its length in the proposed model (its 3 

displacement is fictitiously limited by adopting a cable cross section area greater 4 

than its effective value, as already discussed) while, in the real case, is fixed at the 5 

channel surface by means of eyebolts. These boundary conditions can be 6 

reconsidered and improved in future development of the work. 7 

Regarding the duration of the test reported in abscissa in Fig. 15 (a), it should be 8 

considered that, while in the analytical model it is calculated using the geometry 9 

of the channel and the velocity of the debris surge, for what it concerns the real 10 

test it is determined considering the debris flow as if it was flowing at a constant 11 

rate, neglecting the interruptions that occurred between surges due to the above 12 

described operational limitations. 13 

 14 

  

  

Fig. 16. Deformed patters provided by the present model for t=1.0 s (a), t=2.0 s 15 

(b), t=4.0 s (c) and t=6.0 s (d) (see Fig. 15b) corresponding to the simulation of 16 

the on site tests described above. 17 

 18 

In Fig. 16 a full 3-dimensional reconstruction of the net deformed pattern during 19 

the loading process is also given; as can be observed it shows how the method can 20 

realistically reproduce the barrier deformation with the time, providing the net 21 

shape as the flow phenomena proceeds and the debris accumulates behind the 22 

retention barrier. This results can be usefully applied in the future for setting up a 23 

real time net monitoring system able to define threshold values to be controlled in 24 

situ by means of specific measuring devices. 25 
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The energy dissipated by the barrier upon the impact with the debris flow can be 1 

calculated by adding two terms: the first derived from the dissipation of the brake 2 

devices Eb and the second induced by the elastic deformation of the supporting 3 

cables EE (see Eq. (31)). 4 
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In our simulation of the test, the amount of energy dissipated  at the end of the 5 

impact phase is approximately equal to 286 kJ. 6 

Sun & Law [55] proposed several analytical solution for the determination of the 7 

design impact energy of the barrier based upon pile-up or run-up mechanisms. In 8 

our case, the most appropriate formulation appears to be the run-up mechanism 9 

with the height of the final debris accumulation equal to the height of the barrier. 10 

The related equation, proposed by Sun & Law [55] and rewritten with our 11 

notations becomes: 12 
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The application of  Eq. (32) to the Pieve d’Alpago test, considering the parameters 13 

acquired from the back analysis described above, gives a design impact energy of 14 

the barrier EB equal to 452 KJ. This result is obtained considering the angle 15 

between the horizontal and the upper surface of the debris accumulated behind the 16 

barrier substantially horizontal ( = 1°) as observed during the test. The interface 17 

friction coefficient  is determined, using Eq. (33) described in [55] through a 18 

back analysis procedure aimed at obtaining the impact duration Tf  comparable 19 

with that calculated by the proposed analytical model (approximately 8 s).  20 

  21 
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(33) 

The above consideration indicates that around 37%  of the design impact energy 22 

of the debris flow is dissipated internally during the impact phase and only the 23 

remaining portion is transferred to the barrier.  24 
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5. Conclusions 1 

The energy associated with debris flows along with their velocity, active volumes 2 

and run out distances have often made these phenomena very destructive and 3 

dangerous. The design of retention devices, which are often a must in populated 4 

area or wherever it is necessary to limit the destructive effects of debris flows, is 5 

often carried out using previous experiences and subjective knowledge of the 6 

phenomena mechanics.  Analytical approaches are seldom used and generally 7 

based on numerical modelling (FEM). However,  the numerical modelling of 8 

these structures, which should be carried out considering the debris flow impact 9 

dynamics, can turn out to be very complicated and not always reliable in 10 

applicative cases. For these reasons, the need of a sound design instrument,  easily 11 

applicable in standard, is becoming of paramount importance and is not yet 12 

available to practitioners.   13 

In the present paper a simplified analysis of the mechanics of debris-flow is 14 

considered in order to estimate the forces developed by such a flow impacting on 15 

a retention barrier. Then, an analytical simplified structural model of cable-like 16 

retention barriers is developed, based on the equation of equilibrium of wires 17 

under large displacements condition, and the restraining forces as well as the 18 

cable stresses are finally estimated. A parametric study has been presented, in 19 

order to demonstrate the capability of the proposed model to capture all the main 20 

mechanical aspect occurring during the impact of a debris flow against a flexible 21 

structure. The boundary conditions for the lower cable are the same as those listed 22 

for the other cables (i.e. anchored at the channel sides), avoiding to consider the 23 

lower cable connected to the channel bottom. This geometrical configuration is 24 

often used, in consideration of the scarce mechanical reliability of the debris 25 

deposited along the channel. 26 

The comparison between experimental and numerical results has been presented, 27 

as well. The satisfactory agreement hereby shown, enable us to state that the 28 

present approach is promising, even though, some differences have been recorded; 29 

such discrepancies are possibly due to the simplifying variables introduced in the 30 

calculation and to some of the theoretical assumption needed to achieve an 31 

analytical solution of the problem. However, this work represents a starting point 32 

that will need further development along with additional validations. At present, 33 

new experimental data are processed (either taken from literature or from direct 34 



40 

measurements) and several parametric analysis are under development in order to 1 

define the sensitivity of the model upon changes in the structural geometry or in 2 

the debris flow features. 3 
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