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a b s t r a c t

The design of tunnels must be conducted based on the knowledge of the territory. The longer the
structure, the larger the area to be investigated, and the greater the number of surveys and tests to
be performed in order to thoroughly examine all the relevant features. Therefore, optimization of the
investigation process is strongly required to obtain complete and reliable data for the design of the
infrastructure. The fast development of remote sensing technologies and the affordability of their
products have contributed to proving their benefits as supports for investigation, encouraging the
spreading of automatic or semi-automatic methods for regional scale surveys. Similarly, considering the
scale of the rock outcrop, photogrammetric and laser scanner techniques are well-established techniques
for representing geometrical features of rock masses, and the benefits of non-contact surveys in terms of
safety and time consumption are acknowledged. Unfortunately, in most cases, data obtained at different
scales of investigations are only partially integrated or compared, probably due to the missing exchange
of knowledge among experts of different fields (e.g. geologists and geotechnical engineers). The authors,
after experiencing such a lack of connection among the results of different surveys concerning tunnels,
propose a multiscale approach for the optimization of the investigation process, starting from the
regional scale, to obtain the data that can be useful not only for planning more detailed surveys in a
preliminary phase, but also for making previsions on the discontinuity sets that are present in the rock
masses subjected to excavations. A methodological process is proposed and illustrated by means of a case
study. Preliminary results are discussed to highlight the potentiality of this method and its limitations.
� 2018 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting by
Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).

1. IntroductionQ1

An in-depth knowledge of the geological aspects of the area in
which a tunnel will be excavated is fundamental for optimizing the
layout. In fact, costs, duration of the work and possible issues
are strictly correlated to the geological, geomechanical and
hydrogeological variables of the strata. The investigation process
needs to be optimized to obtain complete and reliable data for the
preliminary design of the infrastructure.

The stratigraphic, structural and hydrogeological settings can
be preliminarily acquired from literature data, aerial and satellite
images, particularly in case of scarce bibliography or limited
accessibility of the area. Then, onsite surveys are usually performed

to validate and integrate the data. During this step, information
regarding the most favorable direction of the tunnel layout
is inferred, and detailed surveys (geognostic investigations,
geophysical surveys, etc.) to be performed along this direction are
then planned to establish the definitive layout.

Anyway, the onsite survey alone could be insufficient to obtain
the missing data due to the limited scale of observation, costs and
duration of the operations and safety conditions. Therefore, partic-
ularly in the first steps of the design, the use of remote sensing
technologies is fundamental, and their fast development and the
affordability of their products have contributed to extensively
proving their benefits as supports for geological lineaments identi-
fication (Clark andWilson,1994;Davis and Reynolds,1996; Florinsky,
1998; Suzen and Toprak, 1998; Chorowicz et al., 1999; Morelli and
Piana, 2006; Marghany and Hashim, 2010; van der Meer et al.,
2012; Hashim et al., 2013), encouraging the spreading of automatic
or semi-automatic methods for regional scale surveys (Deffontaines
et al., 1994; Koike et al., 1995; Wladis, 1999; Tripathi et al., 2000;
Mavrantza and Argialas, 2003, 2008; Ramli et al., 2010; Lee et al.,
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2012; Vaz et al., 2012; Soto-Pinto et al., 2013; Al-Obeidat et al., 2016).
The need to overcome possible limitations of the use of satellite
images due to the characteristics of sensor, landform, lighting and
weather conditions (Shepherd and Dymond, 2003; Smith and Wise,
2007) has promoted the use of digital terrain models (DTMs) for
lineament mapping (Ganas et al., 2005; Jordan et al., 2005; Masoud
and Koike, 2006, 2011; 2017; Jacques et al., 2012; Seleem, 2013;
Rahnama and Gloaguen, 2014; Bonetto et al., 2015).

Inmany cases, a repetition on a small scale of structural elements
is observed at a regional scale. Rocks are able to record permanently
the effects of one or more stress fields by deforming in a brittle or
ductile way. For this reason, at regional scale, the effects of plate
tectonics are revealed by folds and faults, affecting large portions of
territory, which represent different evolutive phases of the tectonic
history of the area. Those structures also influence the arrangement
of local tectonics, where structural elements can be often observed,
whose orientation is similar to those identified at regional scale.
For example, a fold axis could produce a foliation parallel to the axial
plane, visible at mesoscale and microscale; similarly, a significant
fault could produce discontinuity sets parallel to it, visible at
the scale of rock face. Therefore, regional scale investigation in
preliminary design, if accurately performed, could give very useful
information to make hypothesis and previsions on what one could
expect to find at local scale. This is the main assumption of the
integrated multiscale method presented hereinafter.

Once the definitive layout has been chosen, the final design
requires creating a geological-technical section, in which homo-
geneous geological domains and their mechanical characteristics
are defined. This will have to be continuously checked and updated
during the executive phase. In fact, the design does not end till the
tunnel is finished. Due to the complexity of the work, the great
longitudinal extension and the consequent possible variability of
the geological and geotechnical characteristics of the encountered
materials, the Eurocode 7 (EN 1997-1:2004, 2004) permits the
implementation of the observational method (Peck, 1969), which
is a continuous, managed and integrated process of design,
construction control, monitoring and review, enabling appropriate,
previously defined modifications to be incorporated during (or
after) construction (Nicholson et al., 1999).

In this paper, a semi-automatic method for linear features
identification at regional scale (Bonetto et al., 2015) is applied to
obtaining the information that can be useful for making previsions
on the potential discontinuity sets encountered during the exca-
vation. Then a non-contact method for surveying discontinuities
orientation (Ferrero et al., 2009) is applied continuously to tunnel
fronts in order to update the assumed geomechanical model, check
design choices and validate the preliminary data obtained at
regional scale. Amethodological process is proposed and illustrated
bymeans of an application to a portion of the tunnel called Finestra
Val Lemme, a lateral access of the Terzo Valico tunnel. Preliminary
results are discussed in order to highlight the potentiality of this
method and its limitations.

2. The Finestra Val Lemme case study

The Rhine-Alpine Corridor constitutes one of the busiest freight
routes of Europe, connecting the North Sea ports of Rotterdam and
Antwerp to the Mediterranean basin in Genoa, via Switzerland
and some of the major economic centers in the Rhine-Ruhr and
Rhine-Main-Neckar regions and the agglomeration of Milan in
Northern Italy (European Commission e Mobility and Transport,
2017). This north-to-south corridor will integrate Priority Projects
5 and 24, ERTMS Corridor A and Rail Freight Corridor 1.

Part of the Rhine-Alpine Corridor is represented by the high
speed/high capacity railway from Milan to Genoa, denominated

“Terzo Valico dei Giovi” (Terzo Valico, 2017), currently in progress.
The layout covers an overall distance of 53 km (37 km in tunnels).
It consists of two tubes, each being equipped with a single track.
This means that train traffic through the tubes is one-way. The two
tubes are linked by connecting side tunnels, which can be used in
emergencies as escape routes. This configuration conforms to the
highest security standards for tunnels. The tunnels will be mainly
excavated by drill-and-blast method, except for some sections in
which mechanical methods will be used. For construction and
safety reasons, the main tunnel is intersected by four lateral access
tunnels (Polcevera, Cravasco, Castagnola and Val Lemme). In
particular, the Val Lemme one, currently being completed (Terzo
Valico, 2017), is located on the right side of the Lemme Valley
(Alessandria Province, Italy). It is about 1.7 km long, its direction is
N102.28�, and the maximum cover height is 240 m. The excavation
process was carried out following the design criteria of the ADECO-
RS method (Lunardi, 2006, 2008). The Finestra Val Lemme tunnel
was dug in the “Argilloscisti di Costagiutta” and “Argilloscisti
di Murta” formations (Fig. 1). They consist of dark gray shale
with pervasive schistosity characterized by the presence of small-
spacing and graphite-sericite coats caused by fluid circulated
during deformation stages (Capponi et al., 2009).

3. Regional scale investigation

CurvaTool code (Umili et al., 2013; Bonetto et al., 2015) has been
developed considering the following assumption: on a DTM, a
geological lineament can be geometrically identified as a convex or
concave edge, particularly where there is evidence of a structural
control of the geomorphological evolution of the analyzed area.

CurvaTool performs the identification of all the significant linear
features of a DTM, e.g. polylines composed of points whose prin-
cipal curvature values are above the thresholds assigned by the user
(this method is called semi-automatic because the user is asked for
two thresholds, and then the linear features extraction procedure is
automatic) (Umili et al., 2013). Next, the obtained database can be
statistically analyzed according to the geological knowledge of
the area, in order to identify the orientation, length and spatial
distribution of the lineaments. Post-processing performed by Filter
code (Bonetto et al., 2015) can follow two different approaches: if
no literature data are available for the studied area, the resulting
rosette of directions can be used to make observations useful for a
preliminary tectonic assessment. Instead, if the mean directions
of lineaments sets are known, Filter code classifies each edge,
attributing it to the correspondent input cluster.

By plotting the obtained database on the DTM, domains char-
acterized by different deformation styles could be recognized. The
overall positive aspects of this semi-automatic process were found
to be the informativeness on geological structure for preliminary
geological assessment and set identification, the possibility to
identify the most interesting portions of the area to be investigated,
and the possibility to analyze zones that are not directly accessible
(Bonetto et al., 2015). Certainly, a residual possibility that some of
the extracted linear features could be false lineaments, namely
natural or artificial linear elements that do not represent geological
lineaments, exists and must be taken into account. However, this
is reduced by two conditions: lineaments whose dimensions
are smaller or similar to the ground resolution are not e or only
partially e represented by the DTM; moreover, the most common
artificial linear elements, such as roads and railroads, are almost flat
and therefore, even if detectable on the DTM surface, they belong to
regions with non-significant curvature values. Since the purpose of
the application of CurvaTool is not only to create a lineament map,
but also to obtain information about the average direction of line-
ament sets, a single false lineament cannot invalidate the result of a
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cluster analysis performed on all extracted linear features
(Bonetto et al., 2017).

Results of the regional scale investigation presented in Section
5.1 have been obtained by using CurvaTool code combined with
Filter code.

4. Detailed scale investigation

A geostructural survey devoted to a systematic and quantitative
description of rock discontinuities (ISRM, 1978; Priest, 1993) is
a fundamental part of the characterization of a rock mass.
Traditionally, surveys in tunnels are based on a visual interpretation
more than a really quantitative sampling, particularly for the
geometrical characteristics of discontinuities. Their orientation is
measured by means of a geological compass. Anyway, where dis-
continuities cannot be easily accessed (e.g. upper part of the face), a
simple estimate is reported; moreover, due to the limited time
available for the survey, not all the discontinuities are considered
and only a sketch of the main discontinuity sets is reported.

In order to follow the requirements of the limit state design
(LSD) (EN 1997-1:2004, 2004), survey methods should guarantee
the high level of accuracy and precision of the results to reduce
the uncertainties of the estimate of the design parameters. This is
particularly relevant for the geometrical characteristics of discon-
tinuities, since dimension and shape of potentially detachable
blocks depend on their values. Therefore, it would be fundamental
that, at least in tunnels in which the face is visible, the most
advanced non-contact survey methods were used to continuously
update a database of the rockmass characteristics: the possibility to
investigate something as a rock face that will not exist anymore
after a short time is very important to allow the operations to be
repeated and to justify the construction choices.

Photogrammetric and laser scanner techniques are well-
established methods for the representation of the geometrical
features of rock masses. A digital surface model (DSM) can be
rapidly created, without direct access to the rock face. In tunnels
excavated with drill-and-blast or mechanical methods (e.g. road-
headers, hydraulic cutters), namely the tunnels in which the face is
visible, the acquisition of images or point cloud interferes for only a
few minutes with the operations and can be easily integrated
within the process (Gaich et al., 1999; Nakai et al., 2003; Fekete
et al., 2010; Roncella et al., 2012; Racaniello et al., 2015). The
georeferenced DSM and the associated images can be then used as
inputs for codes able to measure orientation and spacing of the
recognizable discontinuities (Kemeny and Donovan, 2005; Roncella
and Forlani, 2005; Trinks et al., 2005; Feng and Roshoff, 2006;
Haneberg, 2006; Slob et al., 2007; Ferrero et al., 2009;
Sturzenegger and Stead, 2009; Gigli and Casagli, 2011; Lato and
Vöge, 2012; Riquelme et al., 2014). The benefits of non-contact
surveys in terms of statistical reliability, safety and time
consumption are appreciated both by the scientific community and
companies.

The survey should interfere as little as possible with the exca-
vation process. Therefore, it is likely that a well-designed photo-
grammetric survey could be the best choice, since image acquisition
is very fast andmoving a digital camera ismuch easier thanmoving a
heavy terrestrial laser scanner (TLS) (Roncella et al., 2012).

In this context, in order to validate the regional scale data, a very
fast non-contact survey method was used. The required equipment
consists of a digital reflex camera, a tripod and a level staff equipped
with a bubble. The camera and the appropriate lens were previ-
ously calibrated to quantify the distortion produced on the image
and allow for its correction. The camerawas mounted on the tripod
in order to reduce the possible vibrations during the shooting.

Fig. 1. Extract (not in scale) of the new Piedmont geological map in scale 1:250,000 (Piana et al., 2017) and Finestra Val Lemme tunnel layout. AGI: Shale of Costagiutta; AGF: Shale
of Murta; MOR: Formation of Molare; MBF: Metabasalt of M. Figogna; VOL: Limestone of Voltaggio; LRV: Phyllitic Schist of M. Larvego; CVS/MGC: Metabasalt of Cravasco; GLL:
Limestone of Gallaneto; LHP: Lherzolitic Peridotite of M. Tobbio; SNV: Antigoritic Serpentine Schist and Serpentinite. Q4
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The level staff was inserted in another tripod in order to guarantee
its uprightness during the shooting.

The shooting was performed after the face was excavated, the
muck was loaded and the dust was deposited. At this point, it was
necessary to verify that the light was sufficient and homogeneous
(and, in case it was not, light could be added by using portable
spotlights). After that, the user placed the level staff (that must be
vertical) approximately in correspondence with the tunnel axis, as
near as possible the rock face, according to the safety conditions.
Then the camera was placed at a distance to the face so that
the entire face was contained in the image and it covered quite
completely the image at the same time. Three images were shot
from three different positions, as described in Fig. 2, and then the
level staff was removed. This procedure took less than 10 min to be
performed and could be easily integrated in the excavation process.

The commercial software PhotoScan (Agisoft LLC, 2013) was
then used in order to obtain a DSM. The three images were input, as
well as the calibration parameters. Moreover, in order to assign the
local reference system and the scale, two well recognizable points
P1 and P2 of the level staff were collimated on each photo. The
distance (L) between them was measured on the level staff and
assigned as a vertical scale bar. Moreover, P1 (located well
below P2) was chosen as the origin of the reference system and
coordinates (0, 0, 0) were assigned to it. Therefore, coordinates of
P2 are (0, 0, L). The x- and y-axes were chosen to be parallel and
perpendicular, respectively, to the rock face.

Considering that the discontinuity orientation measurements
are influenced by the point density of the DSM (Ferrero et al., 2009),
an average ground resolution of 2 cmwas considered as suitable for
the following non-contact survey. Rockscan software (Roncella and
Forlani, 2005; Ferrero et al., 2009) was used to perform a detailed
structural survey by combining, for each of the considered rock
faces, the three photographs taken during the photogrammetric
survey and the reconstructed DSM. Basically, the operator delimits
the discontinuity planes manually on a photograph and, since the
exterior and interior orientation parameters are given for each
photograph, the DSM can be projected onto the chosen photo. The
software then estimates the plane that best fits the points within
the delimited region and calculates its dip and dip direction. This
method allows a large number of planes to be defined quickly and
the examined rock face can be studied using a larger statistical

sample than that obtained by sampling along a few scan lines
(Curtaz et al., 2014).

Planes selection was carried out uniformly on the rock face. In
order not to bias the sampling (e.g. favoring the selection of the
most represented discontinuity sets), all the outcropping faces
were selected on rock dihedrals, where present.

Thanks to the vertical reference systemmaterialized by the level
staff, dip data obtained from the survey do not require to be cor-
rected. On the contrary, dip direction data must be corrected by
simply adding the angle corresponding to the tunnel direction
(referring to the considered rock face location) with respect to the
north. This correction is required since the data are expressed in a
local reference system, which considers the north as the direction
that is orthogonal to the rock face. Therefore, it is necessary to refer
the dip direction data to an absolute reference system considering
the true north. After the correction, orientation data were statisti-
cally treated and compared to those obtained from the traditional
survey in order to check their congruence (see Section 5.2).

5. Application of the proposed multiscale method to the
case study

5.1. Regional scale investigation of the area

A DTM (Fig. 3) with ground resolution of 1 point every 10 m
(Piedmont Region GeoNetwork, 2008), covering an area of about
104 km2 containing the location of the Finestra Val Lemme, was
used as input for CurvaTool code. Since the area is mountainous,
with an elevation difference of 842 m, the DTM surface contains a
large number of recognizable crests and valleys, making the area
suitable for semi-automatic linear feature extraction. Observing the
map (Fig. 4) obtained by plotting on the DTM the 4772 linear
elements given by CurvaTool, one can recognize three sectors,
which extend along the NNW-SSE direction. The central sector (B)
is characterized by a high density of linear features, striking mainly
towards NW-SE and, followed by NE-SW. Linear features are less
frequent in the areas adjacent to the sector B, but their directions
are almost the same. In particular, the eastern sector (C) shows the
lowest density of linear features, which are short and in some cases
striking E-W. The western sector (A) shows instead a high density,
even lower than that of sector B. Based on the rosette diagram
(Fig. 5) obtained from the database produced by CurvaTool, four
main sets have been identified (Table 1) and assigned to Filter code
in order to perform a cluster analysis. After the application of Filter,
linear features belonging to different sets were automatically

Fig. 2. Scheme of the relative positions of the three shooting points (1: left; 2: center;
3: right), the level staff and the rock face (modified after Roncella et al., 2012). Fig. 3. Shaded DTM of the area including Finestra Val Lemme (923,898 points).
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represented in distinct colors (Fig. 6) and the map representing
CurvaTool results could be easily interpreted, confirming what has
already been described for the three different sectors.

In the studied area, the Italian geological map (Fig. 7) reports a
deformation zone associated with the Voltaggio fault. In particular,
this zone cartographically corresponds to sector B (Figs. 6 and 7),
in which linear features mainly strike along the direction of the
Voltaggio fault (NW-SE) and its conjugate system (NE-SW), which
is characterized by shorter lineaments.

Comparing the three sectors on the DTM to geological literature,
they correspond to the tectono-stratigraphic domains respectively
named, fromwest to east, the Voltri Group (A), the Sestri-Voltaggio
Zone (B) and the Ligurian Units (C). The Voltri Group is an Alpine
basement-related domain and it mainly consists of ophiolitic
metamorphic rock, whereas the Ligurian Units consist of non-
metamorphic ophiolitic units lying on an Apennine basement.
The Sestri-Voltaggio Zone is located at the eastern margin of the

Voltri Group and corresponds to a deformation area that includes
three tectono-stratigraphic units (Cortesogno and Haccard, 1984)
involved in the Alpine subduction-related tectonic events. The
tectonic limit between the Voltri Group and the Sestri-Voltaggio
Zone is known as the Sestri-Voltaggio Line. All the sectors are
characterized by ductile deformation during the Alpine stage
over-printed by brittle deformation during the Apenninic stage.
The Sestri-Voltaggio fault is the main tectonic lineament, and it is
considered as a deformation zone and structural domain including
Alpine tectono-metamorphic units.

The tectono-stratigraphic domains and the tectonic boundaries
of the Sestri-Voltaggio Zone in literature are very similar to the
contacts between the sectors observed in Fig. 4.

The Finestra Val Lemme tunnel is located in the sector C, in the
area where the shale formations, recently named “Argilloscisti di
Murta” and “Argilloscisti di Costagiutta”, outcrop (named “Argille a
Palombini” formation according to Fig. 7). In these formations,
brittle deformation generally acts along the pre-existing schistosity
and generates the main set of discontinuities observed in the area.
A few joints and faults describing high angle to the schistosity are
also present, showing low persistence and high spacing. In this
sector, CurvaTool shows the presence of NW-SE and NE-SW linear
features, according to the structures expected from preliminary
surveys and found during the excavation. Similar orientations are
also recognized with higher density in sector A and, particularly,
in sector B, which appears to be the most deformed.

5.2. Detailed scale investigation of tunnel rock faces: traditional
and non-contact surveys

Traditional expeditious geomechanical surveys were carried out
on 62 rock faces. For each face, a specific datasheet was filled in
with the technical and geological information, with particular

Fig. 5. Rosette diagram representing azimuthal frequencies (expressed as percentages
of the total number of extracted linear features). Only the upper hemisphere is
considered since diametrically opposed directions are equivalent.

Table 1
Orientation of lineament sets used as input for Filter.

Set ID Main direction Azimuthal direction (�) Standard deviation (�)

L1 N-S 0 20
L2 E-W 90 20
L3 NW-SE 135 20
L4 NE-SW 45 20

Fig. 6. Map of linear features extracted by CurvaTool and processed by Filter: Set L1 in
green, L2 in yellow, L3 in fuchsia, and L4 in blue. The three sectors (A, B, and C) are
delimited.

Fig. 4. Map of linear features extracted by CurvaTool, subdivided in crests (red) and
valleys (blue). Three distinct sectors (A, B, and C) are delimited.
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attention to orientation and hydraulic features of the main
observed discontinuities. Foliation was clearly observed, oriented
in normal directionwith respect to the rock face, forming a variable
angle from 80� up to 100� with respect to the tunnel axis. For safety
reasons, measures were not directly taken on the face and a safety
distance of a few meters was always respected.

Non-contact survey was performed on 18 DSM of progressive
rock faces (Fig. 8) and it allowed for the collection of a statistically
significant number of measurements of orientation, spacing and
trace length (Racaniello, 2014; Racaniello et al., 2015).

An effective bidirectional lighting system on the roof facilitated
the application of this type of survey and enhanced the quality of
the photogrammetric survey, without further need to use portable
spotlights.

The comparison of the results obtained from the application of
both methods (traditional and non-contact) to 18 excavation faces
shows a significant difference in the number of measurements
acquired. The photogrammetric approach allowed collecting

hundreds of measurements from each front, instead of the few ones
obtained from the traditional method.

In order to simplify the visualizations of the results, the
poles of the sets of discontinuities recognized on each front were
directly reported on the Schmidt stereograms by distinguishing
those obtained from the non-contact method (Fig. 9) and those
from the traditional method (Fig. 10). With both approaches, at
least 4 main sets could be recognized (Table 2). The main set is the
NNE-SSW trending one (K1), which appears in all the investigated
fronts. This is mainly represented by a highemedium angle
double-vergent (W-WNW and E-ESE) set in the non-contact
survey and a predominant E-ESE high-angle dipping set in the
traditional survey. In the latter case, a medium angle WNW-
dipping set has been interpreted as a separate set (K5), but it
should be compared to the medium angle WNW-dipping discon-
tinuities associated with the set K1 in the non-contact data anal-
ysis, due to the scattered and denser cloud of measurements.
Other sets were identified without continuity in the investigated

Fig. 7. Italian geological map (scale 1:100,000), sheet No. 82 Genova (http://193.206.192.231/carta_geologica_italia/tavoletta.php?foglio¼82).
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fronts. They consisted of medium angle S-, SW- and SE-dipping
sets named K2, K3 and K4, respectively, which were present
commonly for the both approaches.

6. Comparison of data obtained at two different scales of
investigation

Application of themethodologies proposed in this papermade it
possible to highlight the “similarities” between the structural fea-
tures recognized in detail during excavation and the ones identified
with CurvaTool analysis at regional scale and confirmed by the
existing literature and geological maps. In the case of the Val

Lemme tunnel, for example, the detailed surveys carried out with
the traditional and non-contact methods showed the presence
of similar discontinuity sets respectively striking NNE-SSW, E-W,
NW-SE and NE-SW. These directions can be directly compared with
those of the ranging intervals of themain linear elements identified
at regional scale by CurvaTool (Fig. 11).

Results of this comparison should suggest how the applica-
tion of the semi-automatic method for linear features extraction
in a preliminary phase of the survey could provide useful and
reliable indications with regard to the preferential orientations
expected during excavation, especially in the absence of litera-
ture data.

Fig. 8. Example of a set of (three) images shot following the scheme in Fig. 1 and the obtained DSM.

Fig. 9. Stereographic projection of the pole of the discontinuities sets identified with the non-contact method in correspondence with 18 fronts of the Finestra Val Lemme tunnel.
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7. Conclusions

In this text, a method was proposed for the preliminary
definition of the tectonic layout of an area, preparatory for planning
onsite surveys and the infrastructure layout.

Brittle tectonics aspects, particularly relevant in infrastructures
design, are often preliminarily deduced from a morphotectonic
analysis, traditionally carried out in a subjective and visual way
based on photointerpretation of remotely sensed images. The re-
sults of this kind of analysis are strongly influenced by the expe-
rience and the awareness of the operator, who in any case requires
long time for identifying a significant number of linear features.

It emerges that a semi-automatic approach as the one imple-
mented in CurvaTool code allows to quickly and objectively identify
linear morphological elements on a DTM. The obtained results and
their comparisonwith literature data, in this case used in retrospect
in order to validate the method, highlight strong agreement and
give an encouraging confirmation on the benefit of this method. In
case that literature would offer limited or insufficiently detailed
geological, geomorphological and structural information, the use of
CurvaTool could help in the identification of possible geological
anomalies. This is particularly true as the morphological layout of
the area is influenced by the tectonics, and the reliability of the
obtained results increases in case of an active neotectonics.

Furthermore, directions of the main linear elements identified
at regional scale by CurvaTool are similar to those of the sets
identified at local scale with both traditional and non-contact ap-
proaches, suggesting that the semi-automatic method of extraction
of linear features should be useful in a preliminary phase to obtain
reliable indications with regard to the preferential orientations
expected during excavation, especially in the absence of literature
data. Considering this first application of themultiscale approach to
the characterization of rock masses for civil engineering design,
it seems promising and could imply important consequences
regarding design reliability and expected costs.
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Fig. 10. Stereographic projection of the pole of the discontinuities sets identified with the traditional expeditious method in correspondence with 18 fronts of the Finestra Val
Lemme tunnel.

Table 2
Orientation of the main sets identified during non-contact and traditional expedi-
tious surveys.

Set ID Orientation (dip/dip direction) (�)

Non-contact survey Traditional expeditious survey

K1 88/105 80/094
K2 40/185 46/180
K3 52/240 56/260
K4 60/140 67/125
K5 e 57/309

Fig. 11. Comparison between the average strike of the main set identified at the scale
of the rock face with both non-contact and traditional survey (great circles) and the
main orientations of the linear elements identified by CurvaTool at regional scale
(strike lines). Elements with similar strike are represented with the same color.
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