2,264 research outputs found
Epsilon-Near-Zero Al-Doped ZnO for Ultrafast Switching at Telecom Wavelengths: Outpacing the Traditional Amplitude-Bandwidth Trade-Off
Transparent conducting oxides have recently gained great attention as
CMOS-compatible materials for applications in nanophotonics due to their low
optical loss, metal-like behavior, versatile/tailorable optical properties, and
established fabrication procedures. In particular, aluminum doped zinc oxide
(AZO) is very attractive because its dielectric permittivity can be engineered
over a broad range in the near infrared and infrared. However, despite all
these beneficial features, the slow (> 100 ps) electron-hole recombination time
typical of these compounds still represents a fundamental limitation impeding
ultrafast optical modulation. Here we report the first epsilon-near-zero AZO
thin films which simultaneously exhibit ultra-fast carrier dynamics (excitation
and recombination time below 1 ps) and an outstanding reflectance modulation up
to 40% for very low pump fluence levels (< 4 mJ/cm2) at the telecom wavelength
of 1.3 {\mu}m. The unique properties of the demonstrated AZO thin films are the
result of a low temperature fabrication procedure promoting oxygen vacancies
and an ultra-high carrier concentration. As a proof-of-concept, an all-optical
AZO-based plasmonic modulator achieving 3 dB modulation in 7.5 {\mu}m and
operating at THz frequencies is numerically demonstrated. Our results overcome
the traditional "modulation depth vs. speed" trade-off by at least an order of
magnitude, placing AZO among the most promising compounds for
tunable/switchable nanophotonics.Comment: 14 pages, 9 figures, 1 tabl
How does the geodesic rule really work for global symmetry breaking first order phase transitions?
The chain of events usually understood to lead to the formation of
topological defects during phase transitions is known as the Kibble mechanism.
A central component of the mechanism is the so-called ``geodesic rule''.
Although in the Abelian Higgs model the validity of the geodesic rule has been
questioned recently, it is known to be valid on energetic grounds for a global
U(1) symmetry breaking transition. However, even for these globally symmetric
models no dynamical analisys of the rule has been carried to this date, and
some points as to how events proceed still remain obscure. This paper tries to
clarify the dynamics of the geodesic rule in the context of a global U(1)
model. With an appropriate ansatz for the field modulus we find a family of
analytical expressions, phase walls, that accounts for both geodesic and
nongeodesic configurations. We then show how the latter ones are unstable and
decay into the former by nucleating pairs of defects. Finnally, we try to give
a physical perspective of how the geodesic rule might really work in these
transitions.Comment: 10 pages, 9 multiple figre
Vector boson production at hadron colliders: a fully exclusive QCD calculation at NNLO
We consider QCD radiative corrections to the production of W and Z bosons in
hadron collisions. We present a fully exclusive calculation up to
next-to-next-to-leading order (NNLO) in QCD perturbation theory. To perform
this NNLO computation, we use a recently proposed version of the subtraction
formalism. The calculation includes the gamma-Z interference, finite-width
effects, the leptonic decay of the vector bosons and the corresponding spin
correlations. Our calculation is implemented in a parton level Monte Carlo
program. The program allows the user to apply arbitrary kinematical cuts on the
final-state leptons and the associated jet activity, and to compute the
corresponding distributions in the form of bin histograms. We show selected
numerical results at the Tevatron and the LHC.Comment: 7 pages, 3 ps figure
Ultra-compact modulators based on novel CMOS-compatible plasmonic materials
We propose several planar layouts of ultra-compact plasmonic waveguide
modulators that utilize alternative CMOS-compatible materials. The modulation
is efficiently achieved by tuning the carrier concentration in a transparent
conducting oxide layer, thereby tuning the waveguide either in plasmonic
resonance or off-resonance. Resonance significantly increases the absorption
coefficient of the plasmonic waveguide, which enables larger modulation depth.
We show that an extinction ratio of 86 dB/um can be achieved, allowing for a
3-dB modulation depth in less than one micron at the telecommunication
wavelength. Our multilayer structures can potentially be integrated with
existing plasmonic and photonic waveguides as well as novel semiconductor-based
hybrid photonic/electronic circuits
Polarization proximity effect in isolator crystal pairs
We experimentally studied the polarization dynamics (orientation and
ellipticity) of near infrared light transmitted through magnetooptic Yttrium
Iron Garnet crystal pairs using a modified balanced detection scheme. When the
pair separation is in the sub-millimeter range, we observed a proximity effect
in which the saturation field is reduced by up to 20%. 1D magnetostatic
calculations suggest that the proximity effect originates from magnetostatic
interactions between the dipole moments of the isolator crystals. This
substantial reduction of the saturation field is potentially useful for the
realization of low-power integrated magneto-optical devices.Comment: submitted to Optics Letter
Optical time reversal from time-dependent Epsilon-Near-Zero media
Materials with a spatially uniform but temporally varying optical response
have applications ranging from magnetic field-free optical isolators to
fundamental studies of quantum field theories. However, these effects typically
become relevant only for time-variations oscillating at optical frequencies,
thus presenting a significant hurdle that severely limits the realisation of
such conditions. Here we present a thin-film material with a permittivity that
pulsates (uniformly in space) at optical frequencies and realises a
time-reversing medium of the form originally proposed by Pendry [Science 322,
71 (2008)]. We use an optically pumped, 500 nm thick film of epsilon-near-zero
(ENZ) material based on Al-doped zinc oxide (AZO). An incident probe beam is
both negatively refracted and time-reversed through a reflected
phase-conjugated beam. As a result of the high nonlinearity and the refractive
index that is close to zero, the ENZ film leads to time reversed beams
(simultaneous negative refraction and phase conjugation) with near-unit
efficiency and greater-than-unit internal conversion efficiency. The ENZ
platform therefore presents the time-reversal features required e.g. for
efficient subwavelength imaging, all-optical isolators and fundamental quantum
field theory studies
Charm-quark fragmentation with an effective coupling constant
We use a recently proposed non-perturbative model, based on an effective
strong coupling constant and free from tunable parameters, to study c-flavoured
hadron production in e+e- annihilation. Charm-quark production is described in
the framework of perturbative fragmentation functions, with NLO coefficient
functions, NLL non-singlet DGLAP evolution and NNLL large-x resummation. We
model hadronization effects by means of the effective coupling constant in the
NNLO approximation and compare our results with experimental data taken at the
Z0 pole and at the Upsilon(4S) resonance. We find that, within the experimental
and theoretical uncertainties, our model is able to give a reasonable
description of D*+-meson spectra from ALEPH for x<1-Lambda/m_c. More serious
discrepancies are instead present when comparing with D and D^* data from BELLE
and CLEO in x-space. Within the errors, our model is nonetheless capable of
reproducing the first ten Mellin moments of all considered data sets. However,
the fairly large theoretical uncertainties call for a full NNLO/NNLL analysis.Comment: 26 pages, 10 figures. Analysis in Mellin space and few references
adde
Cosmological Consequences of Slow-Moving Bubbles in First-Order Phase Transitions
In cosmological first-order phase transitions, the progress of true-vacuum
bubbles is expected to be significantly retarded by the interaction between the
bubble wall and the hot plasma. We examine the evolution and collision of
slow-moving true-vacuum bubbles. Our lattice simulations indicate that phase
oscillations, predicted and observed in systems with a local symmetry and with
a global symmetry where the bubbles move at speeds less than the speed of
light, do not occur inside collisions of slow-moving local-symmetry bubbles. We
observe almost instantaneous phase equilibration which would lead to a decrease
in the expected initial defect density, or possibly prevent defects from
forming at all. We illustrate our findings with an example of defect formation
suppressed in slow-moving bubbles. Slow-moving bubble walls also prevent the
formation of `extra defects', and in the presence of plasma conductivity may
lead to an increase in the magnitude of any primordial magnetic field formed.Comment: 10 pages, 7 figures, replaced with typos corrected and reference
added. To appear in Phys. Rev.
- …
