2,264 research outputs found

    Epsilon-Near-Zero Al-Doped ZnO for Ultrafast Switching at Telecom Wavelengths: Outpacing the Traditional Amplitude-Bandwidth Trade-Off

    Full text link
    Transparent conducting oxides have recently gained great attention as CMOS-compatible materials for applications in nanophotonics due to their low optical loss, metal-like behavior, versatile/tailorable optical properties, and established fabrication procedures. In particular, aluminum doped zinc oxide (AZO) is very attractive because its dielectric permittivity can be engineered over a broad range in the near infrared and infrared. However, despite all these beneficial features, the slow (> 100 ps) electron-hole recombination time typical of these compounds still represents a fundamental limitation impeding ultrafast optical modulation. Here we report the first epsilon-near-zero AZO thin films which simultaneously exhibit ultra-fast carrier dynamics (excitation and recombination time below 1 ps) and an outstanding reflectance modulation up to 40% for very low pump fluence levels (< 4 mJ/cm2) at the telecom wavelength of 1.3 {\mu}m. The unique properties of the demonstrated AZO thin films are the result of a low temperature fabrication procedure promoting oxygen vacancies and an ultra-high carrier concentration. As a proof-of-concept, an all-optical AZO-based plasmonic modulator achieving 3 dB modulation in 7.5 {\mu}m and operating at THz frequencies is numerically demonstrated. Our results overcome the traditional "modulation depth vs. speed" trade-off by at least an order of magnitude, placing AZO among the most promising compounds for tunable/switchable nanophotonics.Comment: 14 pages, 9 figures, 1 tabl

    How does the geodesic rule really work for global symmetry breaking first order phase transitions?

    Get PDF
    The chain of events usually understood to lead to the formation of topological defects during phase transitions is known as the Kibble mechanism. A central component of the mechanism is the so-called ``geodesic rule''. Although in the Abelian Higgs model the validity of the geodesic rule has been questioned recently, it is known to be valid on energetic grounds for a global U(1) symmetry breaking transition. However, even for these globally symmetric models no dynamical analisys of the rule has been carried to this date, and some points as to how events proceed still remain obscure. This paper tries to clarify the dynamics of the geodesic rule in the context of a global U(1) model. With an appropriate ansatz for the field modulus we find a family of analytical expressions, phase walls, that accounts for both geodesic and nongeodesic configurations. We then show how the latter ones are unstable and decay into the former by nucleating pairs of defects. Finnally, we try to give a physical perspective of how the geodesic rule might really work in these transitions.Comment: 10 pages, 9 multiple figre

    Vector boson production at hadron colliders: a fully exclusive QCD calculation at NNLO

    Get PDF
    We consider QCD radiative corrections to the production of W and Z bosons in hadron collisions. We present a fully exclusive calculation up to next-to-next-to-leading order (NNLO) in QCD perturbation theory. To perform this NNLO computation, we use a recently proposed version of the subtraction formalism. The calculation includes the gamma-Z interference, finite-width effects, the leptonic decay of the vector bosons and the corresponding spin correlations. Our calculation is implemented in a parton level Monte Carlo program. The program allows the user to apply arbitrary kinematical cuts on the final-state leptons and the associated jet activity, and to compute the corresponding distributions in the form of bin histograms. We show selected numerical results at the Tevatron and the LHC.Comment: 7 pages, 3 ps figure

    Ultra-compact modulators based on novel CMOS-compatible plasmonic materials

    Get PDF
    We propose several planar layouts of ultra-compact plasmonic waveguide modulators that utilize alternative CMOS-compatible materials. The modulation is efficiently achieved by tuning the carrier concentration in a transparent conducting oxide layer, thereby tuning the waveguide either in plasmonic resonance or off-resonance. Resonance significantly increases the absorption coefficient of the plasmonic waveguide, which enables larger modulation depth. We show that an extinction ratio of 86 dB/um can be achieved, allowing for a 3-dB modulation depth in less than one micron at the telecommunication wavelength. Our multilayer structures can potentially be integrated with existing plasmonic and photonic waveguides as well as novel semiconductor-based hybrid photonic/electronic circuits

    Polarization proximity effect in isolator crystal pairs

    Full text link
    We experimentally studied the polarization dynamics (orientation and ellipticity) of near infrared light transmitted through magnetooptic Yttrium Iron Garnet crystal pairs using a modified balanced detection scheme. When the pair separation is in the sub-millimeter range, we observed a proximity effect in which the saturation field is reduced by up to 20%. 1D magnetostatic calculations suggest that the proximity effect originates from magnetostatic interactions between the dipole moments of the isolator crystals. This substantial reduction of the saturation field is potentially useful for the realization of low-power integrated magneto-optical devices.Comment: submitted to Optics Letter

    Optical time reversal from time-dependent Epsilon-Near-Zero media

    Get PDF
    Materials with a spatially uniform but temporally varying optical response have applications ranging from magnetic field-free optical isolators to fundamental studies of quantum field theories. However, these effects typically become relevant only for time-variations oscillating at optical frequencies, thus presenting a significant hurdle that severely limits the realisation of such conditions. Here we present a thin-film material with a permittivity that pulsates (uniformly in space) at optical frequencies and realises a time-reversing medium of the form originally proposed by Pendry [Science 322, 71 (2008)]. We use an optically pumped, 500 nm thick film of epsilon-near-zero (ENZ) material based on Al-doped zinc oxide (AZO). An incident probe beam is both negatively refracted and time-reversed through a reflected phase-conjugated beam. As a result of the high nonlinearity and the refractive index that is close to zero, the ENZ film leads to time reversed beams (simultaneous negative refraction and phase conjugation) with near-unit efficiency and greater-than-unit internal conversion efficiency. The ENZ platform therefore presents the time-reversal features required e.g. for efficient subwavelength imaging, all-optical isolators and fundamental quantum field theory studies

    Charm-quark fragmentation with an effective coupling constant

    Get PDF
    We use a recently proposed non-perturbative model, based on an effective strong coupling constant and free from tunable parameters, to study c-flavoured hadron production in e+e- annihilation. Charm-quark production is described in the framework of perturbative fragmentation functions, with NLO coefficient functions, NLL non-singlet DGLAP evolution and NNLL large-x resummation. We model hadronization effects by means of the effective coupling constant in the NNLO approximation and compare our results with experimental data taken at the Z0 pole and at the Upsilon(4S) resonance. We find that, within the experimental and theoretical uncertainties, our model is able to give a reasonable description of D*+-meson spectra from ALEPH for x<1-Lambda/m_c. More serious discrepancies are instead present when comparing with D and D^* data from BELLE and CLEO in x-space. Within the errors, our model is nonetheless capable of reproducing the first ten Mellin moments of all considered data sets. However, the fairly large theoretical uncertainties call for a full NNLO/NNLL analysis.Comment: 26 pages, 10 figures. Analysis in Mellin space and few references adde

    Cosmological Consequences of Slow-Moving Bubbles in First-Order Phase Transitions

    Get PDF
    In cosmological first-order phase transitions, the progress of true-vacuum bubbles is expected to be significantly retarded by the interaction between the bubble wall and the hot plasma. We examine the evolution and collision of slow-moving true-vacuum bubbles. Our lattice simulations indicate that phase oscillations, predicted and observed in systems with a local symmetry and with a global symmetry where the bubbles move at speeds less than the speed of light, do not occur inside collisions of slow-moving local-symmetry bubbles. We observe almost instantaneous phase equilibration which would lead to a decrease in the expected initial defect density, or possibly prevent defects from forming at all. We illustrate our findings with an example of defect formation suppressed in slow-moving bubbles. Slow-moving bubble walls also prevent the formation of `extra defects', and in the presence of plasma conductivity may lead to an increase in the magnitude of any primordial magnetic field formed.Comment: 10 pages, 7 figures, replaced with typos corrected and reference added. To appear in Phys. Rev.
    corecore