11,893 research outputs found
Log-periodic oscillations due to discrete effects in complex networks
We show that discretization of internode distribution in complex networks
affects internode distances l_ij calculated as a function of degrees (k_i k_j)
and an average path length as function of network size N. For dense
networks there are log-periodic oscillations of above quantities. We present
real-world examples of such a behavior as well as we derive analytical
expressions and compare them to numerical simulations. We consider a simple
case of network optimization problem, arguing that discrete effects can lead to
a nontrivial solution.Comment: 5 pages, 5 figures, REVTE
Zipf's Law : Balancing signal usage cost and communication efficiency
Copyright: © 2015 Salge et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are creditedWe propose a model that explains the reliable emergence of power laws (e.g., Zipf's law) during the development of different human languages. The model incorporates the principle of least effort in communications, minimizing a combination of the information-Theoretic communication inefficiency and direct signal cost. We prove a general relationship, for all optimal languages, between the signal cost distribution and the resulting distribution of signals. Zipf's law then emerges for logarithmic signal cost distributions, which is the cost distribution expected for words constructed from letters or phonemes. Copyright:Peer reviewedFinal Published versio
Chromomagnetic Instability and Induced Magnetic Field in Neutral Two-Flavor Color Superconductivity
We find that the chromomagnetic instability existing in neutral two- flavor
color superconductivity at moderate densities is removed by the formation of an
inhomogeneous condensate of charged gluons and the corresponding induction of a
magnetic field. It is shown that this inhomogeneous ground state is
energetically favored over a homogeneous one. The spontaneous induction of a
magnetic field in a color superconductor at moderate densities can be of
interest for the astrophysics of compact stellar objects exhibiting strong
magnetic fields as magnetars.Comment: Version to appear in PR
Spontaneous symmetry breaking as a resource for noncritically squeezed light
In the last years we have proposed the use of the mechanism of spontaneous
symmetry breaking with the purpose of generating perfect quadrature squeezing.
Here we review previous work dealing with spatial (translational and
rotational) symmetries, both on optical parametric oscillators and four-wave
mixing cavities, as well as present new results. We then extend the phenomenon
to the polarization state of the signal field, hence introducing spontaneous
polarization symmetry breaking. Finally we propose a Jaynes-Cummings model in
which the phenomenon can be investigated at the single-photon-pair level in a
non-dissipative case, with the purpose of understanding it from a most
fundamental point of view.Comment: Review for the proceedings of SPIE Photonics Europe. 11 pages, 5
figures
Scale-free Networks from Optimal Design
A large number of complex networks, both natural and artificial, share the
presence of highly heterogeneous, scale-free degree distributions. A few
mechanisms for the emergence of such patterns have been suggested, optimization
not being one of them. In this letter we present the first evidence for the
emergence of scaling (and smallworldness) in software architecture graphs from
a well-defined local optimization process. Although the rules that define the
strategies involved in software engineering should lead to a tree-like
structure, the final net is scale-free, perhaps reflecting the presence of
conflicting constraints unavoidable in a multidimensional optimization process.
The consequences for other complex networks are outlined.Comment: 6 pages, 2 figures. Submitted to Europhysics Letters. Additional
material is available at http://complex.upc.es/~sergi/software.ht
Effect of antimony on the eutectic reaction of heavy section spheroidal graphite castings
There is a strong demand for heavy section castings made of spheroidal graphite with a fully ferritic matrix, e.g. for manufacturing hubs for windmills. Such castings with slow solidification process are prone to graphite degeneration that leads to a dramatic decrease of the mechanical properties of the cast parts. Chunky graphite is certainly the most difficult case of graphite degeneracy, though it has long been known that the limited and controlled addition of antimony may help eliminate it. The drawback of this remedy is that too large Sb additions lead to other forms of degenerate graphite, and also that antimony is a pearlite promoter. As part of an investigation aimed at mastering low level additions to cast iron melts before casting, solidification of large blocks with or without Sb added was followed by thermal analysis. Comparison of the cooling curves and of the microstructures of these different castings gives suggestions to understand the controlling nucleation and growth mechanisms for chunky graphite cells
Higgs- and Goldstone bosons-mediated long range forces
In certain mild extensions of the Standard Model, spin-independent long range
forces can arise by exchange of two very light pseudoscalar spin--0 bosons. In
particular, we have in mind models in which these bosons do not have direct
tree level couplings to ordinary fermions. Using the dispersion theoretical
method, we find a behaviour of the potential for the exchange of very
light pseudoscalars and a dependence if the pseudoscalars are true
massless Goldstone bosons.Comment: 13 pages (REVTeX), 2 figure
Long range neutrino forces in the cosmic relic neutrino background
Neutrinos mediate long range forces among macroscopic bodies in vacuum. When
the bodies are placed in the neutrino cosmic background, these forces are
modified. Indeed, at distances long compared to the scale , the relic
neutrinos completely screen off the 2-neutrino exchange force, whereas for
small distances the interaction remains unaffected.Comment: 8 pages, 2 figure
- …
