785 research outputs found

    Transparency for Whom? Assessing Discriminatory Artificial Intelligence

    Get PDF

    Coupling between downstream variations of channel width and local pool–riffle bed topography

    Get PDF
    A potential control of downstream channel width variations on the structure and planform of pool–riffle sequence local bed topography is a key to the dynamics of gravel bed rivers. How established pool–riffle sequences respond to time-varying changes in channel width at specific locations, however, is largely unexplored and challenging to address with field-based study. Here, we report results of a flume experiment aimed at building understanding of how statistically steady pool–riffle sequence profiles adjust to spatially prescribed channel width changes. We find that local bed slopes near steady-state conditions inversely correlate with local downstream width gradients when the upstream sediment supply approximates the estimated transport capacity. This result constrains conditions prior to and following the imposed local width changes. Furthermore, this relationship between local channel bed slope and downstream width gradient is consistent with expectations from scaling theory and a broad set of field-based, numerical, and experimental studies (n=88). However, upstream disruptions to coarse sediment supply through actions such as dam removal can result in a transient flipping of the expected inverse correlation between bed slope and width gradient, collectively highlighting that understanding local conditions is critical before typically implemented spatial averaging schemes can be reliably applied.Postprint (published version

    Functionalization of PLLA with Polymer Brushes to Trigger the Assembly of Fibronectin into Nanonetworks

    Get PDF
    [EN] Poly-l-lactic acid (PLLA) has been used as a biodegradable polymer for many years; the key characteristics of this polymer make it a versatile and useful resource for regenerative medicine. However, it is not inherently bioactive. Thus, here, a novel process is presented to functionalize PLLA surfaces with poly(ethyl acrylate) (PEA) brushes to provide biological functionality through PEA's ability to induce spontaneous organization of the extracellular matrix component fibronectin (FN) into physiological-like nanofibrils. This process allows control of surface biofunctionality while maintaining PLLA bulk properties (i.e., degradation profile, mechanical strength). The new approach is based on surface-initiated atomic transfer radical polymerization, which achieves a molecularly thin coating of PEA on top of the underlying PLLA. Beside surface characterization via atomic force microscopy, X-ray photoelectron spectroscopy and water contact angle to measure PEA grafting, the biological activity of this surface modification is investigated. PEA brushes trigger FN organization into nanofibrils, which retain their ability to enhance adhesion and differentiation of C2C12 cells. The results demonstrate the potential of this technology to engineer controlled microenvironments to tune cell fate via biologically active surface modification of an otherwise bioinert biodegradable polymer, gaining wide use in tissue engineering applications.The authors acknowledge the EPSRC (EP/P001114/1) and MRC (MR/S005412/1) funding. The authors also acknowledge the EPSRC funding as part of the Doctoral Training Centre EP/F500424/1. This work was also funded by a grant from the UK Regenerative Medicine Platform. X-ray photoelectron spectroscopy was conducted by the National EPSRC XPS Users' Service (NEXUS), Newcastle.Sprott, MR.; Ferrer, G.; Dalby, MJ.; Salmerón Sánchez, M.; Cantini, M. (2019). Functionalization of PLLA with Polymer Brushes to Trigger the Assembly of Fibronectin into Nanonetworks. Advanced Healthcare Materials (Online). 8(3):1-12. https://doi.org/10.1002/adhm.201801469S11283A. J. Rincon Lasprilla G. A. Rueda Martinez B. H. Lunelli J. E. Jaimes Figueroa A. L. Jardini R. Maciel Filho Chem. Eng. Trans 2011 985Khan, F., Tanaka, M., & Ahmad, S. R. (2015). Fabrication of polymeric biomaterials: a strategy for tissue engineering and medical devices. Journal of Materials Chemistry B, 3(42), 8224-8249. doi:10.1039/c5tb01370dXu, F. J., Yang, X. C., Li, C. Y., & Yang, W. T. (2011). Functionalized Polylactide Film Surfaces via Surface-Initiated ATRP. Macromolecules, 44(7), 2371-2377. doi:10.1021/ma200160hKhan, F., & Tanaka, M. (2017). Designing Smart Biomaterials for Tissue Engineering. International Journal of Molecular Sciences, 19(1), 17. doi:10.3390/ijms19010017Zhao, P., Gu, H., Mi, H., Rao, C., Fu, J., & Turng, L. (2017). Fabrication of scaffolds in tissue engineering: A review. Frontiers of Mechanical Engineering, 13(1), 107-119. doi:10.1007/s11465-018-0496-8Zou, Y., Zhang, L., Yang, L., Zhu, F., Ding, M., Lin, F., … Li, Y. (2018). «Click» chemistry in polymeric scaffolds: Bioactive materials for tissue engineering. Journal of Controlled Release, 273, 160-179. doi:10.1016/j.jconrel.2018.01.023Pyun, J., Kowalewski, T., & Matyjaszewski, K. (2005). Polymer Brushes by Atom Transfer Radical Polymerization. Polymer Brushes, 51-68. doi:10.1002/3527603824.ch2Matyjaszewski, K., Dong, H., Jakubowski, W., Pietrasik, J., & Kusumo, A. (2007). Grafting from Surfaces for «Everyone»:  ARGET ATRP in the Presence of Air. Langmuir, 23(8), 4528-4531. doi:10.1021/la063402eDatta, H., Bhowmick, A. K., & Singha, N. K. (2008). Tailor-made hybrid nanostructure of poly(ethyl acrylate)/clay by surface-initiated atom transfer radical polymerization. Journal of Polymer Science Part A: Polymer Chemistry, 46(15), 5014-5027. doi:10.1002/pola.22829Simakova, A., Averick, S. E., Konkolewicz, D., & Matyjaszewski, K. (2012). Aqueous ARGET ATRP. Macromolecules, 45(16), 6371-6379. doi:10.1021/ma301303bSiegwart, D. J., Oh, J. K., & Matyjaszewski, K. (2012). ATRP in the design of functional materials for biomedical applications. Progress in Polymer Science, 37(1), 18-37. doi:10.1016/j.progpolymsci.2011.08.001Liu, P., & Su, Z. (2005). Surface-initiated atom transfer radical polymerization (SI-ATRP) of n-butyl acrylate from starch granules. Carbohydrate Polymers, 62(2), 159-163. doi:10.1016/j.carbpol.2005.07.018Yu, Q., Johnson, L. M., & López, G. P. (2014). Nanopatterned Polymer Brushes for Triggered Detachment of Anchorage-Dependent Cells. Advanced Functional Materials, 24(24), 3751-3759. doi:10.1002/adfm.201304274Zhu, A., Zhang, M., Wu, J., & Shen, J. (2002). Covalent immobilization of chitosan/heparin complex with a photosensitive hetero-bifunctional crosslinking reagent on PLA surface. Biomaterials, 23(23), 4657-4665. doi:10.1016/s0142-9612(02)00215-6Matyjaszewski, K. (2012). Atom Transfer Radical Polymerization (ATRP): Current Status and Future Perspectives. Macromolecules, 45(10), 4015-4039. doi:10.1021/ma3001719Zhu, Y., Gao, C., Liu, X., He, T., & Shen, J. (2004). Immobilization of Biomacromolecules onto Aminolyzed Poly(L-lactic acid) toward Acceleration of Endothelium Regeneration. Tissue Engineering, 10(1-2), 53-61. doi:10.1089/107632704322791691Tsuji, H., Ogiwara, M., Saha, S. K., & Sakaki, T. (2006). Enzymatic, Alkaline, and Autocatalytic Degradation of Poly(l-lactic acid):  Effects of Biaxial Orientation. Biomacromolecules, 7(1), 380-387. doi:10.1021/bm0507453He, Y., Wang, W., & Ding, J. (2013). Effects of L-lactic acid and D,L-lactic acid on viability and osteogenic differentiation of mesenchymal stem cells. Chinese Science Bulletin, 58(20), 2404-2411. doi:10.1007/s11434-013-5798-yM. Cantini C. González‐García V. Llopis‐Hernández M. Salmerón‐Sánchez T. Horbett J. L. Brash W. Norde Proteins at Interfaces III State of the Art ACS Symposium Series 2012 American Chemical Society Washington DC USA 471 496Llopis-Hernández, V., Rico, P., Moratal, D., Altankov, G., & Salmerón-Sánchez, M. (2013). Role of Material-Driven Fibronectin Fibrillogenesis in Protein Remodeling. BioResearch Open Access, 2(5), 364-373. doi:10.1089/biores.2013.0017Salmerón-Sánchez, M., Rico, P., Moratal, D., Lee, T. T., Schwarzbauer, J. E., & García, A. J. (2011). Role of material-driven fibronectin fibrillogenesis in cell differentiation. Biomaterials, 32(8), 2099-2105. doi:10.1016/j.biomaterials.2010.11.057Vanterpool, F. A., Cantini, M., Seib, F. P., & Salmerón-Sánchez, M. (2014). A Material-Based Platform to Modulate Fibronectin Activity and Focal Adhesion Assembly. BioResearch Open Access, 3(6), 286-296. doi:10.1089/biores.2014.0033Bathawab, F., Bennett, M., Cantini, M., Reboud, J., Dalby, M. J., & Salmerón-Sánchez, M. (2016). Lateral Chain Length in Polyalkyl Acrylates Determines the Mobility of Fibronectin at the Cell/Material Interface. Langmuir, 32(3), 800-809. doi:10.1021/acs.langmuir.5b03259Lozano Picazo, P., Pérez Garnes, M., Martínez Ramos, C., Vallés-Lluch, A., & Monleón Pradas, M. (2014). New Semi-Biodegradable Materials from Semi-Interpenetrated Networks of Poly(ϵ-caprolactone) and Poly(ethyl acrylate). Macromolecular Bioscience, 15(2), 229-240. doi:10.1002/mabi.201400331Schulz, A. S., Gojzewski, H., Huskens, J., Vos, W. L., & Julius Vancso, G. (2017). Controlled sub-10-nanometer poly(N -isopropyl-acrylamide) layers grafted from silicon by atom transfer radical polymerization. Polymers for Advanced Technologies, 29(2), 806-813. doi:10.1002/pat.4187Müllner, M., Dodds, S. J., Nguyen, T.-H., Senyschyn, D., Porter, C. J. H., Boyd, B. J., & Caruso, F. (2015). Size and Rigidity of Cylindrical Polymer Brushes Dictate Long Circulating Properties In Vivo. ACS Nano, 9(2), 1294-1304. doi:10.1021/nn505125fKreyling, W. G., Abdelmonem, A. M., Ali, Z., Alves, F., Geiser, M., Haberl, N., … Parak, W. J. (2015). In vivo integrity of polymer-coated gold nanoparticles. Nature Nanotechnology, 10(7), 619-623. doi:10.1038/nnano.2015.111Pankov, R. (2002). Fibronectin at a glance. Journal of Cell Science, 115(20), 3861-3863. doi:10.1242/jcs.00059Garcı́a, A. J., Vega, M. D., & Boettiger, D. (1999). Modulation of Cell Proliferation and Differentiation through Substrate-dependent Changes in Fibronectin Conformation. Molecular Biology of the Cell, 10(3), 785-798. doi:10.1091/mbc.10.3.785Gattazzo, F., Urciuolo, A., & Bonaldo, P. (2014). Extracellular matrix: A dynamic microenvironment for stem cell niche. Biochimica et Biophysica Acta (BBA) - General Subjects, 1840(8), 2506-2519. doi:10.1016/j.bbagen.2014.01.010Hay, J. J., Rodrigo-Navarro, A., Hassi, K., Moulisova, V., Dalby, M. J., & Salmeron-Sanchez, M. (2016). Living biointerfaces based on non-pathogenic bacteria support stem cell differentiation. Scientific Reports, 6(1). doi:10.1038/srep21809Zhu, Y., Gao, C., Liu, X., & Shen, J. (2002). Surface Modification of Polycaprolactone Membrane via Aminolysis and Biomacromolecule Immobilization for Promoting Cytocompatibility of Human Endothelial Cells. Biomacromolecules, 3(6), 1312-1319. doi:10.1021/bm020074yMacDonald, R. T., McCarthy, S. P., & Gross, R. A. (1996). Enzymatic Degradability of Poly(lactide):  Effects of Chain Stereochemistry and Material Crystallinity. Macromolecules, 29(23), 7356-7361. doi:10.1021/ma960513jTokiwa, Y., & Calabia, B. P. (2006). Biodegradability and biodegradation of poly(lactide). Applied Microbiology and Biotechnology, 72(2), 244-251. doi:10.1007/s00253-006-0488-1Hu, X., Su, T., Li, P., & Wang, Z. (2017). Blending modification of PBS/PLA and its enzymatic degradation. Polymer Bulletin, 75(2), 533-546. doi:10.1007/s00289-017-2054-7Gee, E. P. S., Yüksel, D., Stultz, C. M., & Ingber, D. E. (2013). SLLISWD Sequence in the 10FNIII Domain Initiates Fibronectin Fibrillogenesis. Journal of Biological Chemistry, 288(29), 21329-21340. doi:10.1074/jbc.m113.462077Roach, P., Eglin, D., Rohde, K., & Perry, C. C. (2007). Modern biomaterials: a review—bulk properties and implications of surface modifications. Journal of Materials Science: Materials in Medicine, 18(7), 1263-1277. doi:10.1007/s10856-006-0064-3Dalby, M. J., Gadegaard, N., & Oreffo, R. O. C. (2014). Harnessing nanotopography and integrin–matrix interactions to influence stem cell fate. Nature Materials, 13(6), 558-569. doi:10.1038/nmat3980Neděla, O., Slepička, P., & Švorčík, V. (2017). Surface Modification of Polymer Substrates for Biomedical Applications. Materials, 10(10), 1115. doi:10.3390/ma10101115Ngandu Mpoyi, E., Cantini, M., Reynolds, P. M., Gadegaard, N., Dalby, M. J., & Salmerón-Sánchez, M. (2016). Protein Adsorption as a Key Mediator in the Nanotopographical Control of Cell Behavior. ACS Nano, 10(7), 6638-6647. doi:10.1021/acsnano.6b01649Cantini, M., Rico, P., Moratal, D., & Salmerón-Sánchez, M. (2012). Controlled wettability, same chemistry: biological activity of plasma-polymerized coatings. Soft Matter, 8(20), 5575. doi:10.1039/c2sm25413aChu, P. (2002). Plasma-surface modification of biomaterials. Materials Science and Engineering: R: Reports, 36(5-6), 143-206. doi:10.1016/s0927-796x(02)00004-9Zoppe, J. O., Ataman, N. C., Mocny, P., Wang, J., Moraes, J., & Klok, H.-A. (2017). Surface-Initiated Controlled Radical Polymerization: State-of-the-Art, Opportunities, and Challenges in Surface and Interface Engineering with Polymer Brushes. Chemical Reviews, 117(3), 1105-1318. doi:10.1021/acs.chemrev.6b00314Yasuda, H., & Yasuda, T. (2000). The competitive ablation and polymerization (CAP) principle and the plasma sensitivity of elements in plasma polymerization and treatment. Journal of Polymer Science Part A: Polymer Chemistry, 38(6), 943-953. doi:10.1002/(sici)1099-0518(20000315)38:63.0.co;2-3Ma, H., Textor, M., Clark, R. L., & Chilkoti, A. (2006). Monitoring kinetics of surface initiated atom transfer radical polymerization by quartz crystal microbalance with dissipation. Biointerphases, 1(1), 35-39. doi:10.1116/1.2190697Ohno, S., & Matyjaszewski, K. (2006). Controlling grafting density and side chain length in poly(n-butyl acrylate) by ATRP copolymerization of macromonomers. Journal of Polymer Science Part A: Polymer Chemistry, 44(19), 5454-5467. doi:10.1002/pola.21669Kang, C., Crockett, R. M., & Spencer, N. D. (2013). Molecular-Weight Determination of Polymer Brushes Generated by SI-ATRP on Flat Surfaces. Macromolecules, 47(1), 269-275. doi:10.1021/ma401951wXiao, D., & Wirth, M. J. (2002). Kinetics of Surface-Initiated Atom Transfer Radical Polymerization of Acrylamide on Silica. Macromolecules, 35(8), 2919-2925. doi:10.1021/ma011313xShinoda, H., & Matyjaszewski, K. (2001). Structural Control of Poly(Methyl Methacrylate)-g-poly(Lactic Acid) Graft Copolymers by Atom Transfer Radical Polymerization (ATRP). Macromolecules, 34(18), 6243-6248. doi:10.1021/ma0105791Xu, F. J., Zhao, J. P., Kang, E. T., & Neoh, K. G. (2007). Surface Functionalization of Polyimide Films via Chloromethylation and Surface-Initiated Atom Transfer Radical Polymerization. Industrial & Engineering Chemistry Research, 46(14), 4866-4873. doi:10.1021/ie0701367Zhou, T., Qi, H., Han, L., Barbash, D., & Li, C. Y. (2016). Towards controlled polymer brushes via a self-assembly-assisted-grafting-to approach. Nature Communications, 7(1). doi:10.1038/ncomms11119Guo, W., Zhu, J., Cheng, Z., Zhang, Z., & Zhu, X. (2011). Anticoagulant Surface of 316 L Stainless Steel Modified by Surface-Initiated Atom Transfer Radical Polymerization. ACS Applied Materials & Interfaces, 3(5), 1675-1680. doi:10.1021/am200215xIgnatova, M., Voccia, S., Gilbert, B., Markova, N., Mercuri, P. S., Galleni, M., … Jérôme, C. (2004). Synthesis of Copolymer Brushes Endowed with Adhesion to Stainless Steel Surfaces and Antibacterial Properties by Controlled Nitroxide-Mediated Radical Polymerization. Langmuir, 20(24), 10718-10726. doi:10.1021/la048347tTaran, E., Donose, B., Higashitani, K., Asandei, A. D., Scutaru, D., & Hurduc, N. (2006). ATRP grafting of styrene from benzyl chloride functionalized polysiloxanes: An AFM and TGA study of the Cu(0)/bpy catalyst. European Polymer Journal, 42(1), 119-125. doi:10.1016/j.eurpolymj.2005.06.030Liu, F., Du, C.-H., Zhu, B.-K., & Xu, Y.-Y. (2007). Surface immobilization of polymer brushes onto porous poly(vinylidene fluoride) membrane by electron beam to improve the hydrophilicity and fouling resistance. Polymer, 48(10), 2910-2918. doi:10.1016/j.polymer.2007.03.033Ulery, B. D., Nair, L. S., & Laurencin, C. T. (2011). Biomedical applications of biodegradable polymers. Journal of Polymer Science Part B: Polymer Physics, 49(12), 832-864. doi:10.1002/polb.22259Saito, E., Liao, E. E., Hu, W., Krebsbach, P. H., & Hollister, S. J. (2011). Effects of designed PLLA and 50:50 PLGA scaffold architectures on bone formation in vivo. Journal of Tissue Engineering and Regenerative Medicine, 7(2), 99-111. doi:10.1002/term.497Wang, Z., Wang, Y., Ito, Y., Zhang, P., & Chen, X. (2016). A comparative study on the in vivo degradation of poly(L-lactide) based composite implants for bone fracture fixation. Scientific Reports, 6(1). doi:10.1038/srep20770Armentano, I., Dottori, M., Fortunati, E., Mattioli, S., & Kenny, J. M. (2010). Biodegradable polymer matrix nanocomposites for tissue engineering: A review. Polymer Degradation and Stability, 95(11), 2126-2146. doi:10.1016/j.polymdegradstab.2010.06.007Cantini, M., Gomide, K., Moulisova, V., González-García, C., & Salmerón-Sánchez, M. (2017). Vitronectin as a Micromanager of Cell Response in Material-Driven Fibronectin Nanonetworks. Advanced Biosystems, 1(9), 1700047. doi:10.1002/adbi.201700047Pelta, J., Berry, H., Fadda, G. C., Pauthe, E., & Lairez, D. (2000). Statistical Conformation of Human Plasma Fibronectin. Biochemistry, 39(17), 5146-5154. doi:10.1021/bi992770xGugutkov, D., González-García, C., Rodríguez Hernández, J. C., Altankov, G., & Salmerón-Sánchez, M. (2009). Biological Activity of the Substrate-Induced Fibronectin Network: Insight into the Third Dimension through Electrospun Fibers. Langmuir, 25(18), 10893-10900. doi:10.1021/la9012203P. Rico Tortosa M. Cantini G. Altankov M. Salmeron‐Sanchez M. Monleón Pradas M. J. Vicent Polymers in Regenerative Medicine: Biomedical Applications from Nano‐ to Macro‐Structures 2014 John Wiley & Sons Inc Hoboken New Jersey 91 146Schwarzbauer, J. E., & DeSimone, D. W. (2011). Fibronectins, Their Fibrillogenesis, and In Vivo Functions. Cold Spring Harbor Perspectives in Biology, 3(7), a005041-a005041. doi:10.1101/cshperspect.a005041Martino, M. M., Tortelli, F., Mochizuki, M., Traub, S., Ben-David, D., Kuhn, G. A., … Hubbell, J. A. (2011). Engineering the Growth Factor Microenvironment with Fibronectin Domains to Promote Wound and Bone Tissue Healing. Science Translational Medicine, 3(100), 100ra89-100ra89. doi:10.1126/scitranslmed.3002614Keselowsky, B. G., Collard, D. M., & García, A. J. (2003). Surface chemistry modulates fibronectin conformation and directs integrin binding and specificity to control cell adhesion. Journal of Biomedical Materials Research Part A, 66A(2), 247-259. doi:10.1002/jbm.a.10537Keselowsky, B. G., Collard, D. M., & Garcı́a, A. J. (2004). Surface chemistry modulates focal adhesion composition and signaling through changes in integrin binding. Biomaterials, 25(28), 5947-5954. doi:10.1016/j.biomaterials.2004.01.062Keselowsky, B. G., Collard, D. M., & Garcia, A. J. (2005). Integrin binding specificity regulates biomaterial surface chemistry effects on cell differentiation. Proceedings of the National Academy of Sciences, 102(17), 5953-5957. doi:10.1073/pnas.0407356102Llopis-Hernández, V., Cantini, M., González-García, C., Cheng, Z. A., Yang, J., Tsimbouri, P. M., … Salmerón-Sánchez, M. (2016). Material-driven fibronectin assembly for high-efficiency presentation of growth factors. Science Advances, 2(8), e1600188. doi:10.1126/sciadv.1600188Ballester-Beltrán, J., Moratal, D., Lebourg, M., & Salmerón-Sánchez, M. (2014). Fibronectin-matrix sandwich-like microenvironments to manipulate cell fate. Biomater. Sci., 2(3), 381-389. doi:10.1039/c3bm60248fRedick, S. D., Settles, D. L., Briscoe, G., & Erickson, H. P. (2000). Defining Fibronectin’s Cell Adhesion Synergy Site by Site-Directed Mutagenesis. Journal of Cell Biology, 149(2), 521-527. doi:10.1083/jcb.149.2.521Tanaka, K., Sato, K., Yoshida, T., Fukuda, T., Hanamura, K., Kojima, N., … Watanabe, H. (2011). Evidence for cell density affecting C2C12 myogenesis: possible regulation of myogenesis by cell-cell communication. Muscle & Nerve, 44(6), 968-977. doi:10.1002/mus.22224Allingham, J. S., Smith, R., & Rayment, I. (2005). The structural basis of blebbistatin inhibition and specificity for myosin II. Nature Structural & Molecular Biology, 12(4), 378-379. doi:10.1038/nsmb908Kovács, M., Tóth, J., Hetényi, C., Málnási-Csizmadia, A., & Sellers, J. R. (2004). Mechanism of Blebbistatin Inhibition of Myosin II. Journal of Biological Chemistry, 279(34), 35557-35563. doi:10.1074/jbc.m405319200Cai, Y., Rossier, O., Gauthier, N. C., Biais, N., Fardin, M.-A., Zhang, X., … Sheetz, M. P. (2010). Cytoskeletal coherence requires myosin-IIA contractility. Journal of Cell Science, 123(3), 413-423. doi:10.1242/jcs.058297González-García, C., Moratal, D., Oreffo, R. O. C., Dalby, M. J., & Salmerón-Sánchez, M. (2012). Surface mobility regulates skeletal stem cell differentiation. Integrative Biology, 4(5), 531. doi:10.1039/c2ib00139jHorzum, U., Ozdil, B., & Pesen-Okvur, D. (2014). Step-by-step quantitative analysis of focal adhesions. MethodsX, 1, 56-59. doi:10.1016/j.mex.2014.06.004Selinummi, J., Seppälä, J., Yli-Harja, O., & Puhakka, J. A. (2005). Software for quantification of labeled bacteria from digital microscope images by automated image analysis. BioTechniques, 39(6), 859-863. doi:10.2144/000112018Leahy, D. J., Aukhil, I., & Erickson, H. P. (1996). 2.0 Å Crystal Structure of a Four-Domain Segment of Human Fibronectin Encompassing the RGD Loop and Synergy Region. Cell, 84(1), 155-164. doi:10.1016/s0092-8674(00)81002-

    Improving the Management of Late-Life Depression in Primary Care: Barriers and Facilitators

    Get PDF
    The objectives of this study were to elicit Canadian health professionals' views on the barriers to identifying and treating late-life depression in primary care settings and on the solutions felt to be most important and feasible to implement. A consensus development process was used to generate, rank, and discuss solutions. Twenty-three health professionals participated in the consensus process. Results were analysed using quantitative and qualitative methods. Participants generated 12 solutions. One solution, developing mechanisms to increase family physicians' awareness of resources, was highly ranked for importance and feasibility by most participants. Another solution, providing family physicians with direct mental health support, was highly ranked as important but not as feasible by most participants. Deliberations emphasized the importance of case specific, as needed support based on the principles of shared care. The results suggest that practitioners highly value collaborative care but question the feasibility of implementing these principles in current Canadian primary care contexts
    corecore