96 research outputs found

    Modeling Pinus radiata D. Don growth and pasture production under different land uses and climate scenarios

    Get PDF
    Yield-SAFE is a biophysical model to predict long-term production according to light and water availability in agricultural, forest, and agroforestry systems. The Yield-SAFE model should be calibrated and validated for the highest number of tree species and crops to be used as a management tool that takes into account climate change. This study aimed to calibrate and validate the Yield-SAFE model for Pinus radiata D. Don and sown pasture (Dactylis glomerata L.) to estimate the production in (1) forest systems, (2) agricultural systems, and (3) silvopastoral systems established in Galicia (NW Spain) under different conditions of climate: (i) reference “current” climate from 1961 to 1990, (ii) climate from 2021 to 2050, and (iii) climate from 2051 to 2080. The Yield-SAFE model can now be used to assess the long-term productivity of P. radiata D. Don and D. glomerata L. under different land uses and climate conditions. The Yield-SAFE model simulated similar tree and pasture growth in all scenarios of climate because the inter-annual variation of climate was small. However, tree growth estimated with the Yield-SAFE model was higher in the silvopastoral systems than in the forest systems, indicating that land use had more impact on land productivity than climate. Therefore, in regions such as Galicia, the Yield-SAFE model could be used as a tool to support the land use change in an agroforestry context, whilst also including climate scenarios which is considered a valuable solution to mitigate the effect of climate change

    Integrating belowground carbon dynamics into Yield-SAFE, a parameter sparse agroforestry model

    Get PDF
    Agroforestry combines perennial woody elements (e.g. trees) with an agricultural understory (e.g. wheat, pasture) which can also potentially be used by a livestock component. In recent decades, modern agroforestry systems have been proposed at European level as land use alternatives for conventional agricultural systems. The potential range of benefits that modern agroforestry systems can provide includes farm product diversification (food and timber), soil and biodiversity conservation and carbon sequestration, both in woody biomass and the soil. Whilst typically these include benefits such as food and timber provision, potentially, there are benefits in the form of carbon sequestration, both in woody biomass and in the soil. Quantifying the effect of agroforestry systems on soil carbon is important because it is one means by which atmospheric carbon can be sequestered in order to reduce global warming. However, experimental systems that can combine the different alternative features of agroforestry systems are difficult to implement and long-term. For this reason, models are needed to explore these alternatives, in order to determine what benefits different combinations of trees and understory might provide in agroforestry systems. This paper describes the integration of the widely used soil carbon model RothC, a model simulating soil organic carbon turnover, into Yield-SAFE, a parameter sparse model to estimate aboveground biomass in agroforestry systems. The improvement of the Yield-SAFE model focused on the estimation of input plant material into soil (i.e. leaf fall and root mortality) while maintaining the original aspiration for a simple conceptualization of agroforestry modeling, but allowing to feed inputs to a soil carbon module based on RothC. Validation simulations show that the combined model gives predictions consistent with observed data for both SOC dynamics and tree leaf fall. Two case study systems are examined: a cork oak system in South Portugal and a poplar system in the UK, in current and future climate. (c) 2017, Springer Science+Business Media B.V.European Commission through the AGFORWARD FP7 research Project (contract 613520), Forest Research Center strategic Project (PEst OE/AGR/UI0239/2014), the Portuguese Foundation for Science and Technology (FCT) fellowships SFRH/BD/52691/2014 and SFRH/BPD/96475/2013, XUNTA DE GALICIA, Consellería de Cultura, Educación e Ordenación Universitaria (“Programa de axudas á etapa posdoutoral”) (contract ED481B 2016/071-0

    Integrating belowground carbon dynamics into Yield-SAFE, a parameter sparse agroforestry model

    Get PDF
    Agroforestry combines perennial woody elements (e.g. trees) with an agricultural understory (e.g. wheat, pasture) which can also potentially be used by a livestock component. In recent decades, modern agroforestry systems have been proposed at European level as land use alternatives for conventional agricultural systems. The potential range of benefits that modern agroforestry systems can provide includes farm product diversification (food and timber), soil and biodiversity conservation and carbon sequestration, both in woody biomass and the soil. Whilst typically these include benefits such as food and timber provision, potentially, there are benefits in the form of carbon sequestration, both in woody biomass and in the soil. Quantifying the effect of agroforestry systems on soil carbon is important because it is one means by which atmospheric carbon can be sequestered in order to reduce global warming. However, experimental systems that can combine the different alternative features of agroforestry systems are difficult to implement and long-term. For this reason, models are needed to explore these alternatives, in order to determine what benefits different combinations of trees and understory might provide in agroforestry systems. This paper describes the integration of the widely used soil carbon model RothC, a model simulating soil organic carbon turnover, into Yield-SAFE, a parameter sparse model to estimate aboveground biomass in agroforestry systems. The improvement of the Yield-SAFE model focused on the estimation of input plant material into soil (i.e. leaf fall and root mortality) while maintaining the original aspiration for a simple conceptualization of agroforestry modeling, but allowing to feed inputs to a soil carbon module based on RothC. Validation simulations show that the combined model gives predictions consistent with observed data for both SOC dynamics and tree leaf fall. Two case study systems are examined: a cork oak system in South Portugal and a poplar system in the UK, in current and future climate

    Farmers’ reasoning behind the uptake of agroforestry practices: evidence from multiple case-studies across Europe

    Get PDF
    Potential benefits and costs of agroforestry practices have been analysed by experts, but few studies have captured farmers’ perspectives on why agroforestry might be adopted on a European scale. This study provides answers to this question, through an analysis of 183 farmer interviews in 14 case study systems in eight European countries. The study systems included high natural and cultural value agroforestry systems, silvoarable systems, high value tree systems, and silvopasture systems, as well as systems where no agroforestry practices were occurring. A mixed method approach combining quantitative and qualitative approaches was taken throughout the interviews. Narrative thematic data analysis was performed. Data collection proceeded until no new themes emerged. Within a given case study, i.e. the different systems in different European regions, this sampling was performed both for farmers who practice agroforestry and farmers who did not. Results point to a great diversity of agroforestry practices, although many of the farmers are not aware of the term or concept of agroforestry, despite implementing the practice in their own farms. While only a few farmers mentioned eligibility for direct payments in the CAP as the main reason to remove trees from their land, to avoid the reduction of the funded area, the tradition in the family or the region, learning from others, and increasing the diversification of products play the most important role in adopting or not agroforestry systems

    Agroforestry

    Get PDF
    Agroforestry is the practice of deliberately integrating woody vegetation (trees or shrubs) with crops and/or animal systems to benefit from the resulting ecological and economic interactions. Existing research indicates that appropriate application of agroforestry principles and practices is a key means by which the European Union might achieve more sustainable methods of food and fibre production whilst producing both profits for farmers and environmental benefits for society

    Spatial similarities between European agroforestry systems and ecosystem services at the landscape scale

    Get PDF
    Agroforestry systems are known to provide ecosystem services which differ in quantity and quality from conventional agricultural practices and could enhance rural landscapes. In this study we compared ecosystem services provision of agroforestry and non-agroforestry landscapes in case study regions from three European biogeographical regions: Mediterranean (montado and dehesa), Continental (orchards and wooded pasture) and Atlantic agroforestry systems (chestnut soutos and hedgerows systems). Seven ecosystem service indicators (two provisioning and five regulating services) were mapped, modelled and assessed. Clear variations in amount and provision of ecosystem services were found between different types of agroforestry systems. Nonetheless regulating ecosystems services were improved in all agroforestry landscapes, with reduced nitrate losses, higher carbon sequestration, reduced soil losses, higher functional biodiversity focussed on pollination and greater habitat diversity reflected in a high proportion of semi-natural habitats. The results for provisioning services were inconsistent. While the annual biomass yield and the groundwater recharge rate tended to be higher in agricultural landscapes without agroforestry systems, the total biomass stock was reduced. These broad relationships were observed within and across the case study regions regardless of the agroforestry type or biogeographical region. Overall our study underlines the positive influence of agroforestry systems on the supply of regulating services and their role to enhance landscape structure

    Spatial similarities between European agroforestry systems and ecosystem services at the landscape scale

    Get PDF
    This is a post-peer-review, pre-copyedit version of an article published in Agroforestry Systems. The final authenticated version is available online at: http://dx.doi.org/10.1007/s10457-017-0132-3Agroforestry systems are known to provide ecosystem services which differ in quantity and quality from conventional agricultural practices and could enhance rural landscapes. In this study we compared ecosystem services provision of agroforestry and non-agroforestry landscapes in case study regions from three European biogeographical regions: Mediterranean (montado and dehesa), Continental (orchards and wooded pasture) and Atlantic agroforestry systems (chestnut soutos and hedgerows systems). Seven ecosystem service indicators (two provisioning and five regulating services) were mapped, modelled and assessed. Clear variations in amount and provision of ecosystem services were found between different types of agroforestry systems. Nonetheless regulating ecosystems services were improved in all agroforestry landscapes, with reduced nitrate losses, higher carbon sequestration, reduced soil losses, higher functional biodiversity focussed on pollination and greater habitat diversity reflected in a high proportion of semi-natural habitats. The results for provisioning services were inconsistent. While the annual biomass yield and the groundwater recharge rate tended to be higher in agricultural landscapes without agroforestry systems, the total biomass stock was reduced. These broad relationships were observed within and across the case study regions regardless of the agroforestry type or biogeographical region. Overall our study underlines the positive influence of agroforestry systems on the supply of regulating services and their role to enhance landscape structureWe acknowledge funding through Grant 613520 from the European Commission (Project AGFORWARD, 7th Framework Program), the Xunta de Galicia, Consellería de Cultura, Educación e Ordenación Universitaria (“Programa de axudas á etapa posdoutoral DOG no. 122, 29/06/2016 p.27443, exp: ED481B 2016/071-0”), the Forest Research Center strategic project (PEst OE/AGR/UI0239/2014) and the Portuguese Foundation for Science and Technology through the contract SFRH/BD/52691/2014S

    Agroforestry for high value tree systems in Europe

    Get PDF
    Most farm-based agroforestry projects focus on the integration of trees on arable or livestock enterprises. This paper focuses on the integration of understorey crops and/or livestock within high value tree systems (e.g., apple orchards, olive groves, chestnut woodlands, and walnut plantations), and describes the components, structure, ecosystem services and economic value of ten case studies of this type of agroforestry across Europe. Although their ecological and socio-economic contexts vary, the systems share some common characteristics. The primary objective of the farmer is likely to remain the value of tree products like apples, olives, oranges, or nuts, or particularly high value timber. However there can still be production, environmental or economic benefits of integrating agricultural crops such as chickpeas and barley, or grazing an understorey grass crop with livestock. Three of the systems focused on the grazing of apple orchards with sheep in the UK and France. The introduction of sheep to apple orchards can minimise the need for mowing and provide an additional source of revenue. Throughout the Mediterranean, there is a need to improve the financial viability of olive groves. The case studies illustrate the possibility of intercropping traditional olive stands with chickpea in Greece, or the intercropping of wild asparagus in high density olive groves in Italy. Another system studied in Greece involves orange trees intercropped with chickpeas. Stands of chestnut trees in North-west Spain can provide feed for pigs when the fruit falls in November, and provide an excellent habitat for the commercial production of edible mushrooms. In Spain, in the production of high quality walnut trees using rotations of up to 50–60 years, there are options to establish a legume-based mixed pasture understorey and to introduce sheep to provide financial and environmental benefits

    Agroforestry in the European common agricultural policy

    Get PDF
    Agroforestry is a sustainable land management system that should be more strongly promoted in Europe to ensure adequate ecosystem service provision in the old continent (Decision 529/2013) through the common agricultural policy (CAP). The promotion of the woody component in Europe can be appreciated in different sections of the CAP linked to Pillar I (direct payments and Greening) and Pillar II (rural development programs). However, agroforestry is not recognised as such in the CAP, with the exception of the Measure 8.2 of Pillar II. The lack of recognition of agroforestry practices within the different sections of the CAP reduces the impact of CAP activities by overlooking the optimum combinations that would maximise the productivity of land where agroforestry could be promoted, considering both the spatial and temporal scales

    The Shark Alar Hypothalamus:Molecular Characterization of Prosomeric Subdivisions and Evolutionary Trends

    Get PDF
    The hypothalamus is an important physiologic center of the vertebrate brain involved in the elaboration of individual and species survival responses. To better understand the ancestral organization of the alar hypothalamus we revisit previous data on ScOtp, ScDlx2/5, ScTbr1, ScNkx2.1 expression and Pax6 immunoreactivity jointly with new data on ScNeurog2, ScLhx9, ScLhx5, and ScNkx2.8 expression, in addition to immunoreactivity to serotonin (5-HT) and doublecourtin (DCX) in the catshark Scyliorhinus canicula, a key species for this purpose since cartilaginous fishes are basal representatives of gnathostomes (jawed vertebrates). Our study revealed a complex genoarchitecture for the chondrichthyan alar hypothalamus. We identified terminal (rostral) and peduncular (caudal) subdivisions in the prosomeric paraventricular and subparaventricular areas (TPa/PPa and TSPa/PSPa, respectively) evidenced by the expression pattern of developmental genes like ScLhx5 (TPa) and immunoreactivity against Pax6 (PSPa) and 5-HT (PPa and PSPa). Dorso-ventral subdivisions were only evidenced in the SPa (SPaD, SPaV; respectively) by means of Pax6 and ScNkx2.8 (respectively). Interestingly, ScNkx2.8 expression overlap over the alar-basal boundary, as Nkx2.2 does in other vertebrates. Our results reveal evidences for the existence of different groups of tangentially migrated cells expressing ScOtp, Pax6 and ScDlx2. The genoarchitectonic comparative analysis suggests alternative interpretations of the rostral-most alar plate in prosomeric terms and reveals a conserved molecular background for the vertebrate alar hypothalamus likely acquired before/during the agnathan-gnathostome transition, on which Otp, Pax6, Lhx5, and Neurog2 are expressed in the Pa while Dlx and Nkx2.2/Nkx2.8 are expressed in the SPa
    corecore