50 research outputs found

    Chromosomal mapping of genes encoding subunits of complex I from Neurospora crassa

    Get PDF
    The genes encoding the 21 kDa protein and the 19.3 kDa, 21.3 kDa and 24 kDa iron-sulfur subunits of complex I were located, by RFLP analysis, in Linkage Groups IV, VI, VI and V, respectively, of the Neurospora crassa genom

    Inhalation of bacterial cellulose nanofibrils triggers an inflammatory response and changes lung tissue morphology of mice

    Get PDF
    In view of the growing industrial use of Bacterial cellulose (BC), and taking into account that it might become airborne and be inhaled after industrial processing, assessing its potential pulmonary toxic effects assumes high relevance. In this work, the murine model was used to assess the effects of exposure to respirable BC nanofibrils (nBC), obtained by disintegration of BC produced by Komagataeibacter hansenii. Murine bone marrow-derived macrophages (BMM) were treated with different doses of nBC (0.02 and 0.2 mg/mL, respectively 1 and 10 g of fibrils) in absence or presence of 0.2% Carboxymethyl Cellulose (nBCMC). Furthermore, mice were instilled intratracheally with nBC or nBCMC at different concentrations and at different time-points and analyzed up to 6 months after treatments. Microcrystaline Avicel-plus® CM 2159, a plant-derived cellulose, was used for comparison. Markers of cellular damage (lactate dehydrogenase release and total protein) and oxidative stress (hydrogen peroxidase, reduced glutathione, lipid peroxidation and glutathione peroxidase activity) as well presence of inflammatory cells were evaluated in brochoalveolar lavage (BAL) fluids. Histological analysis of lungs, heart and liver tissues was also performed. BAL analysis showed that exposure to nBCMC or CMC did not induce major alterations in the assessed markers of cell damage, oxidative stress or inflammatory cell numbers in BAL fluid over time, even following cumulative treatments. Avicel-plus® CM 2159 significantly increased LDH release, detected 3 months after 4 weekly administrations. However, histological results revealed a chronic inflammatory response and tissue alterations, being hypertrophy of pulmonary arteries (observed 3 months after nBCMC treatment) of particular concern. These histological alterations remained after 6 months in animals treated with nBC, possibly due to foreign body reaction and the organisms inability to remove the fibers. Overall, despite being a safe and biocompatible biomaterial, BC-derived nanofibrils inhalation may lead to lung pathology and pose significant health risks.The authors acknowledge Embrapa Tropical Agroindustry and Coordination for the Improvement of Higher Education Personnel (CAPES) and the project under the bilateral program FCT/CAPES: Bacterial Cellulose: a platform for the development of bionanoproducts for funding this research. This work was also financially supported by: European Investment Funds by FEDER/COMPETE/POCI - Operational Competitiveness and Internationalization Program, under Project POCI-01-0145-FEDER-006958, National Funds by FCT - Portuguese Foundation for Science and Technology, Project POCI-01-0145-FEDER-006939 (Laboratory for Process Engineering, Environment, Biotechnology and Energy - LEPABE funded by FEDER, funds through COMPETE2020 - Programa Operacional Competitividade e Internacionalização (POCI) - and by national funds through FCT. Rui Gil da Costa is supported by grant nº SFRH/BPD/85462/2012 from FCT, financed by the Portuguese Government and the Social European Fund. This study was supported by the Portuguese Foundation for Science and Technology (FCT) also under the scope of the strategic funding of UID/BIO/04469/2013 unit and COMPETE 2020 (POCI-01-0145-FEDER-006684) and BioTecNorte operation (NORTE-01-0145-FEDER-000004) funded by the European Regional Development Fund under the scope of Norte2020 - Programa Operacional Regional do Norte.info:eu-repo/semantics/publishedVersio

    Trinucleotide repeats in 202 families with ataxia: a small expanded (CAG)n allele at the SCA17 locus

    Get PDF
    BACKGROUND: Ten neurodegenerative disorders characterized by spinocerebellar ataxia (SCA) are known to be caused by trinucleotide repeat (TNR) expansions. However, in some instances the molecular diagnosis is considered indeterminate because of the overlap between normal and affected allele ranges. In addition, the mechanism that generates expanded alleles is not completely understood. OBJECTIVE: To examine the clinical and molecular characteristics of a large group of Portuguese and Brazilian families with ataxia to improve knowledge of the molecular diagnosis of SCA. PATIENTS AND METHODS: We have (1) assessed repeat sizes at all known TNR loci implicated in SCA; (2) determined frequency distributions of normal alleles and expansions; and (3) looked at genotype-phenotype correlations in 202 unrelated Portuguese and Brazilian patients with SCA. Molecular analysis of TNR expansions was performed using polymerase chain reaction amplification. RESULTS: Patients from 110 unrelated families with SCA showed TNR expansions at 1 of the loci studied. Dominantly transmitted cases had (CAG)(n) expansions at the Machado-Joseph disease gene (MJD1) (63%), at SCA2 (3%), the gene for dentatorubropallidoluysian atrophy (DRPLA) (2%), SCA6 (1%), or SCA7 (1%) loci, or (CTG)(n) expansions at the SCA8 (2%) gene, whereas (GAA)(n) expansions in the Freidreich ataxia gene (FRDA) were found in 64% of families with recessive ataxia. Isolated patients also had TNR expansions at the MJD1 (6%), SCA8 (6%), or FRDA (8%) genes; in addition, an expanded allele at the TATA-binding protein gene (TBP), with 43 CAGs, was present in a patient with ataxia and mental deterioration. Associations between frequencies of SCA2 and SCA6 and a frequency of large normal alleles were found in Portuguese and Brazilian individuals, respectively. Interestingly, no association between the frequencies of DRPLA and large normal alleles was found in the Portuguese group. CONCLUSIONS: Our results show that (1) a significant number of isolated cases of ataxia are due to TNR expansions; (2) expanded DRPLA alleles in Portuguese families may have evolved from an ancestral haplotype; and (3) small (CAG)(n) expansions at the TBP gene may cause SCA17

    Congenital bovine spinal dysmyelination is caused by a missense mutation in the SPAST gene

    Get PDF
    Bovine spinal dysmyelination (BSD) is a recessive congenital neurodegenerative disease in cattle (Bos taurus) characterized by pathological changes of the myelin sheaths in the spinal cord. The occurrence of BSD is a longstanding problem in the American Brown Swiss (ABS) breed and in several European cattle breeds upgraded with ABS. Here, we show that the disease locus on bovine chromosome 11 harbors the SPAST gene that, when mutated, is responsible for the human disorder hereditary spastic paraplegia (HSP). Initially, SPAST encoding Spastin was considered a less likely candidate gene for BSD since the modes of inheritance as well as the time of onset and severity of symptoms differ widely between HSP and BSD. However, sequence analysis of the bovine SPAST gene in affected animals identified a R560Q substitution at a position in the ATPase domain of the Spastin protein that is invariant from insects to mammals. Interestingly, three different mutations in human SPAST gene at the equivalent position are known to cause HSP. To explore this observation further, we genotyped more than 3,100 animals of various cattle breeds and found that the glutamine allele exclusively occurred in breeds upgraded with ABS. Furthermore, all confirmed BSD carriers were heterozygous, while all affected calves were homozygous for the glutamine allele consistent with recessive transmission of the underlying mutation and complete penetrance in the homozygous state. Subsequent analysis of recombinant Spastin in vitro showed that the R560Q substitution severely impaired the ATPase activity, demonstrating a causal relationship between the SPAST mutation and BSD

    Alternative Splicing of Spg7, a Gene Involved in Hereditary Spastic Paraplegia, Encodes a Variant of Paraplegin Targeted to the Endoplasmic Reticulum

    Get PDF
    BACKGROUND: Hereditary spastic paraplegia defines a group of genetically heterogeneous diseases characterized by weakness and spasticity of the lower limbs owing to retrograde degeneration of corticospinal axons. One autosomal recessive form of the disease is caused by mutation in the SPG7 gene. Paraplegin, the product of SPG7, is a component of the m-AAA protease, a high molecular weight complex that resides in the mitochondrial inner membrane, and performs crucial quality control and biogenesis functions in mitochondria. PRINCIPAL FINDINGS: Here we show the existence in the mouse of a novel isoform of paraplegin, which we name paraplegin-2, encoded by alternative splicing of Spg7 through usage of an alternative first exon. Paraplegin-2 lacks the mitochondrial targeting sequence, and is identical to the mature mitochondrial protein. Remarkably, paraplegin-2 is targeted to the endoplasmic reticulum. We find that paraplegin-2 exposes the catalytic domains to the lumen of the endoplasmic reticulum. Moreover, endogenous paraplegin-2 accumulates in microsomal fractions prepared from mouse brain and retina. Finally, we show that the previously generated mouse model of Spg7-linked hereditary spastic paraplegia is an isoform-specific knock-out, in which mitochondrial paraplegin is specifically ablated, while expression of paraplegin-2 is retained. CONCLUSIONS/SIGNIFICANCE: These data suggest a possible additional role of AAA proteases outside mitochondria and open the question of their implication in neurodegeneration

    Whole-Exome Sequencing Identifies Homozygous AFG3L2 Mutations in a Spastic Ataxia-Neuropathy Syndrome Linked to Mitochondrial m-AAA Proteases

    Get PDF
    We report an early onset spastic ataxia-neuropathy syndrome in two brothers of a consanguineous family characterized clinically by lower extremity spasticity, peripheral neuropathy, ptosis, oculomotor apraxia, dystonia, cerebellar atrophy, and progressive myoclonic epilepsy. Whole-exome sequencing identified a homozygous missense mutation (c.1847G>A; p.Y616C) in AFG3L2, encoding a subunit of an m-AAA protease. m-AAA proteases reside in the mitochondrial inner membrane and are responsible for removal of damaged or misfolded proteins and proteolytic activation of essential mitochondrial proteins. AFG3L2 forms either a homo-oligomeric isoenzyme or a hetero-oligomeric complex with paraplegin, a homologous protein mutated in hereditary spastic paraplegia type 7 (SPG7). Heterozygous loss-of-function mutations in AFG3L2 cause autosomal-dominant spinocerebellar ataxia type 28 (SCA28), a disorder whose phenotype is strikingly different from that of our patients. As defined in yeast complementation assays, the AFG3L2Y616C gene product is a hypomorphic variant that exhibited oligomerization defects in yeast as well as in patient fibroblasts. Specifically, the formation of AFG3L2Y616C complexes was impaired, both with itself and to a greater extent with paraplegin. This produced an early-onset clinical syndrome that combines the severe phenotypes of SPG7 and SCA28, in additional to other “mitochondrial” features such as oculomotor apraxia, extrapyramidal dysfunction, and myoclonic epilepsy. These findings expand the phenotype associated with AFG3L2 mutations and suggest that AFG3L2-related disease should be considered in the differential diagnosis of spastic ataxias

    Disruption of Mitochondrial DNA Replication in Drosophila Increases Mitochondrial Fast Axonal Transport In Vivo

    Get PDF
    Mutations in mitochondrial DNA polymerase (pol γ) cause several progressive human diseases including Parkinson's disease, Alper's syndrome, and progressive external ophthalmoplegia. At the cellular level, disruption of pol γ leads to depletion of mtDNA, disrupts the mitochondrial respiratory chain, and increases susceptibility to oxidative stress. Although recent studies have intensified focus on the role of mtDNA in neuronal diseases, the changes that take place in mitochondrial biogenesis and mitochondrial axonal transport when mtDNA replication is disrupted are unknown. Using high-speed confocal microscopy, electron microscopy and biochemical approaches, we report that mutations in pol γ deplete mtDNA levels and lead to an increase in mitochondrial density in Drosophila proximal nerves and muscles, without a noticeable increase in mitochondrial fragmentation. Furthermore, there is a rise in flux of bidirectional mitochondrial axonal transport, albeit with slower kinesin-based anterograde transport. In contrast, flux of synaptic vesicle precursors was modestly decreased in pol γ−α mutants. Our data indicate that disruption of mtDNA replication does not hinder mitochondrial biogenesis, increases mitochondrial axonal transport, and raises the question of whether high levels of circulating mtDNA-deficient mitochondria are beneficial or deleterious in mtDNA diseases

    An industry 4.0 oriented tool for supporting dynamic selection of dispatching rules based on Kano model satisfaction scheduling

    No full text
    Production scheduling is an optimizing problem that can contribute strongly to the competitive capacity of companies producing goods and services. A way to promote the survival and the sustainability of the organizations in this upcoming era of Industry 4.0 (I4.0) is the efficient use of the resources. A complete failure to stage tasks properly can easily lead to a waste of time and resources, which could result in a low level of productivity and high monetary losses. In view of the above, it is essential to analyse and continuously develop new models of production scheduling. This paper intends to present an I4.0 oriented decision support tool to the dynamic scheduling. After a fist solution has been generated, the developed prototype has the ability to create new solutions as tasks leave the system and new ones arrive, in order to minimize a certain measure of performance. Using a single machine environment, the proposed prototype was validated in an in-depth computational study through several instances of dynamic problems with stochastic characteristics. Moreover, a more robust analysis was done, which demonstrated that there is statistical evidence that the proposed prototype performance is better than single method of scheduling and proved the effectiveness of the prototype.This work has been supported by FCT - Fundacao para a Ciencia e Tecnologia within the Project Scope: UID/CEC/00319/2019
    corecore