299 research outputs found

    Inferring cell cycle feedback regulation from gene expression data

    Get PDF
    AbstractFeedback control is an important regulatory process in biological systems, which confers robustness against external and internal disturbances. Genes involved in feedback structures are therefore likely to have a major role in regulating cellular processes.Here we rely on a dynamic Bayesian network approach to identify feedback loops in cell cycle regulation. We analyzed the transcriptional profile of the cell cycle in HeLa cancer cells and identified a feedback loop structure composed of 10 genes. In silico analyses showed that these genes hold important roles in system’s dynamics. The results of published experimental assays confirmed the central role of 8 of the identified feedback loop genes in cell cycle regulation.In conclusion, we provide a novel approach to identify critical genes for the dynamics of biological processes. This may lead to the identification of therapeutic targets in diseases that involve perturbations of these dynamics

    Genetic interaction screen for severe neurodevelopmental disorders reveals a functional link between Ube3a and Mef2 in Drosophila melanogaster

    Get PDF
    Neurodevelopmental disorders (NDDs) are clinically and genetically extremely heterogeneous with shared phenotypes often associated with genes from the same networks. Mutations in TCF4, MEF2C, UBE3A, ZEB2 or ATRX cause phenotypically overlapping, syndromic forms of NDDs with severe intellectual disability, epilepsy and microcephaly. To characterize potential functional links between these genes/proteins, we screened for genetic interactions in Drosophila melanogaster. We induced ubiquitous or tissue specific knockdown or overexpression of each single orthologous gene (Da, Mef2, Ube3a, Zfh1, XNP) and in pairwise combinations. Subsequently, we assessed parameters such as lethality, wing and eye morphology, neuromuscular junction morphology, bang sensitivity and climbing behaviour in comparison between single and pairwise dosage manipulations. We found most stringent evidence for genetic interaction between Ube3a and Mef2 as simultaneous dosage manipulation in different tissues including glia, wing and eye resulted in multiple phenotype modifications. We subsequently found evidence for physical interaction between UBE3A and MEF2C also in human cells. Systematic pairwise assessment of the Drosophila orthologues of five genes implicated in clinically overlapping, severe NDDs and subsequent confirmation in a human cell line revealed interactions between UBE3A/Ube3a and MEF2C/Mef2, thus contributing to the characterization of the underlying molecular commonalities

    Cardiac Deletion of Smyd2 Is Dispensable for Mouse Heart Development

    Get PDF
    Chromatin modifying enzymes play a critical role in cardiac differentiation. Previously, it has been shown that the targeted deletion of the histone methyltransferase, Smyd1, the founding member of the SET and MYND domain containing (Smyd) family, interferes with cardiomyocyte maturation and proper formation of the right heart ventricle. The highly related paralogue, Smyd2 is a histone 3 lysine 4- and lysine 36-specific methyltransferase expressed in heart and brain. Here, we report that Smyd2 is differentially expressed during cardiac development with highest expression in the neonatal heart. To elucidate the functional role of Smyd2 in the heart, we generated conditional knockout (cKO) mice harboring a cardiomyocyte-specific deletion of Smyd2 and performed histological, functional and molecular analyses. Unexpectedly, cardiac deletion of Smyd2 was dispensable for proper morphological and functional development of the murine heart and had no effect on global histone 3 lysine 4 or 36 methylation. However, we provide evidence for a potential role of Smyd2 in the transcriptional regulation of genes associated with translation and reveal that Smyd2, similar to Smyd3, interacts with RNA Polymerase II as well as to the RNA helicase, HELZ

    Adaptive scan strategies for fetal MRI imaging using slice to volume techniques

    Get PDF
    © 2015 IEEE.In this paper several novel methods to account for fetal movements during fetal Magnetic Resonance Imaging (fetal MRI) are explored. We show how slice-to-volume reconstruction methods can be used to account for motion adaptively during the scan. Three candidate methods are tested for their feasibility and integrated into a computer simulation of fetal MRI. The first alters the main orientation of the stacks used for reconstruction, the second stops if too much motion occurs during slice acquisition and the third steers the orientation of each slice individually. Reconstruction informed adaptive scanning can provide a peak signal-to-noise ratio (PSNR) improvement of up to 2 dB after only two stacks of scanned slices and is more efficient with respect to the uncertainty of the final reconstruction

    Phase-rectified signal averaging method to predict perinatal outcome in infants with very preterm fetal growth restriction- a secondary analysis of TRUFFLE-trial

    Get PDF
    BACKGROUND: Phase-rectified signal averaging, an innovative signal processing technique, can be used to investigate quasi-periodic oscillations in noisy, nonstationary signals that are obtained from fetal heart rate. Phase-rectified signal averaging is currently the best method to predict survival after myocardial infarction in adult cardiology. Application of this method to fetal medicine has established significantly better identification than with short-term variation by computerized cardiotocography of growth-restricted fetuses. OBJECTIVE: The aim of this study was to determine the longitudinal progression of phase-rectified signal averaging indices in severely growth-restricted human fetuses and the prognostic accuracy of the technique in relation to perinatal and neurologic outcome. STUDY DESIGN: Raw data from cardiotocography monitoring of 279 human fetuses were obtained from 8 centers that took part in the multicenter European “TRUFFLE” trial on optimal timing of delivery in fetal growth restriction. Average acceleration and deceleration capacities were calculated by phase-rectified signal averaging to establish progression from 5 days to 1 day before delivery and were compared with short-term variation progression. The receiver operating characteristic curves of average acceleration and deceleration capacities and short-term variation were calculated and compared between techniques for short- and intermediate-term outcome. RESULTS: Average acceleration and deceleration capacities and short-term variation showed a progressive decrease in their diagnostic indices of fetal health from the first examination 5 days before delivery to 1 day before delivery. However, this decrease was significant 3 days before delivery for average acceleration and deceleration capacities, but 2 days before delivery for short-term variation. Compared with analysis of changes in short-term variation, analysis of (delta) average acceleration and deceleration capacities better predicted values of Apgar scores <7 and antenatal death (area under the curve for prediction of antenatal death: delta average acceleration capacity, 0.62 [confidence interval, 0.19–1.0]; delta short-term variation, 0.54 [confidence interval, 0.13–0.97]; P=.006; area under the curve for prediction Apgar <7: average deceleration capacity <24 hours before delivery, 0.64 [confidence interval, 0.52–0.76]; short-term variation <24 hours before delivery, 0.53 [confidence interval, 0.40–0.65]; P=.015). Neither phase-rectified signal averaging indices nor short-term variation showed predictive power for developmental disability at 2 years of age (Bayley developmental quotient, <95 or <85). CONCLUSIONS: The phase-rectified signal averaging method seems to be at least as good as short-term variation to monitor progressive deterioration of severely growth-restricted fetuses. Our findings suggest that for short-term outcomes such as Apgar score, phase-rectified signal averaging indices could be an even better test than short-term variation. Overall, our findings confirm the possible value of prospective trials based on phase-rectified signal averaging indices of autonomic nervous system of severely growth-restricted fetuses

    Selective intrauterine growth restriction in monochorionic twins : changing patterns in umbilical artery Doppler flow and outcomes

    Get PDF
    Objectives: To describe changes in umbilical artery (UA) Doppler flow in monochorionic diamniotic (MCDA) twins affected by selective intrauterine growth restriction (sIUGR), to correlate Doppler findings with pregnancy course and perinatal outcome, and to report postnatal follow-up. Methods: This was a retrospective study of 140 MCDA twins with sIUGR. UA end-diastolic flow, defined as Doppler waveform pattern Type I (persistently positive), Type II (persistently absent or persistently reversed) or Type III (intermittently absent or intermittently reversed), was recorded at first examination and monitored weekly until double or single intrauterine fetal death (IUFD), bipolar cord coagulation or delivery. All neonates had an early neonatal brain scan, magnetic resonance imaging, when indicated, and neurological assessment during infancy. Rates (per 100 person-weeks) and hazard ratios (HR) of IUFD in the IUGR twin in each pregnancy were calculated considering UA Doppler pattern as a time-dependent variable. Results: At first examination, there were 65 cases with UA Doppler waveform pattern Type I, 62 with Type II and 13 with Type III. Of the 65 Type-I cases, 48 (74%) remained stable, while 17 (26%) changed to either Type II absent (14%), Type II reversed (9%) or Type III (3%). Of 62 Type-II cases (47 with absent and 15 with reversed flow), 33 (53%) remained stable (18 with absent and all 15 with reversed flow). The 29 Type-II absent cases which changed became Type II reversed (24/47, 51%) or Type III (5/47, 11%). All 13 Type-III cases remained stable. Compared with Type I, the risk of IUFD (adjusted for estimated fetal weight discordance and amniotic fluid deepest vertical pocket) was highest when the pregnancy was or became Type II reversed (HR, 9.5; 95% CI, 2.7\u201332.7) or Type II absent (HR, 4.3; 95% CI, 1.3\u201314.3). Mild neurological impairment was more prevalent in the IUGR twin than in the large cotwin (7% vs 1%, P = 0.02). Conclusions: Risk stratification based on UA Doppler is useful for planning ultrasound surveillance. However, patterns can change over time, with important consequences for management and outcome

    The Impact of Kidney Development on the Life Course: A Consensus Document for Action

    Get PDF
    Hypertension and chronic kidney disease (CKD) have a significant impact on global morbidity and mortality. The Low Birth Weight and Nephron Number Working Group has prepared a consensus document aimed to address the relatively neglected issue for the developmental programming of hypertension and CKD. It emerged from a workshop held on April 2, 2016, including eminent internationally recognized experts in the field of obstetrics, neonatology, and nephrology. Through multidisciplinary engagement, the goal of the workshop was to highlight the association between fetal and childhood development and an increased risk of adult diseases, focusing on hypertension and CKD, and to suggest possible practical solutions for the future. The recommendations for action of the consensus workshop are the results of combined clinical experience, shared research expertise, and a review of the literature. They highlight the need to act early to prevent CKD and other related noncommunicable diseases later in life by reducing low birth weight, small for gestational age, prematurity, and low nephron numbers at birth through coordinated interventions. Meeting the current unmet needs would help to define the most cost-effective strategies and to optimize interventions to limit or interrupt the developmental programming cycle of CKD later in life, especially in the poorest part of the world
    • …
    corecore