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Feedback control is an important regulatory process in biological systems, which confers robustness
against external and internal disturbances. Genes involved in feedback structures are therefore likely
to have a major role in regulating cellular processes.

Here we rely on a dynamic Bayesian network approach to identify feedback loops in cell cycle regula-
tion. We analyzed the transcriptional profile of the cell cycle in HeLa cancer cells and identified a feed-
back loop structure composed of 10 genes. In silico analyses showed that these genes hold important
roles in system’s dynamics. The results of published experimental assays confirmed the central role of
8 of the identified feedback loop genes in cell cycle regulation.

In conclusion, we provide a novel approach to identify critical genes for the dynamics of biological pro-
cesses. This may lead to the identification of therapeutic targets in diseases that involve perturbations of
these dynamics.

� 2011 Elsevier Inc. All rights reserved.
1. Introduction

Feedback control is ubiquitous in biomedical systems [1–3].
Biological regulation is achieved by a complex set of networks that
include several intertwined feedback loops, sometimes hierarchi-
cally related [4]. At the molecular level, with the emergence of
high-throughput technologies, it became clear that genes are in-
volved in a large number of feedback regulation processes [5,6].

Feedback control systems possess a number of very important
properties, including robustness to disturbances and the capability
of generating state trajectories known as limit cycles, i.e. periodic
oscillations, which are commonly present in cell dynamics such
as the cell cycle [7]. Thus, there is an increasing interest in analyzing
the role and nature of feedback loops, in particular to understand
cell fate specification and commitment during development [8,9]
and in cancer [10,11]. A thorough study of the nature of feedback
loops can lead not only to a better understanding of basic molecular
mechanisms of cells and tissues, but also to the identification of
therapeutic targets and the design of new drug compounds. Genes
involved in feedback regulatory structures are indeed likely to have
a key role in the regulation of cellular processes.
ll rights reserved.
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The understanding of the role and implications of feedback
loops on cell dynamics requires techniques able to deal with partial
knowledge and non-linear behaviours [12–18]. The most interest-
ing approaches proposed in the literature are those that derive net-
works of causally interconnected genes [19], as they provide two
different kinds of information: first, they give a representation of
the structure of gene relationships, expressed in terms of net-
works; second, they usually provide a mathematical model of gene
expression dynamics.

In this paper we propose a dynamic Bayesian network approach
to the identification of feedback loops and the generation of hypoth-
eses on key regulatory genes in cell cycle expression control. Bayes-
ian networks (BNs) and their dynamic counterpart dynamic
Bayesian networks (DBNs) are flexible and easily interpretable
models that allow the representation of multivariate probabilistic
relationships both at qualitative and quantitative level. Compared
to other methodologies for reverse engineering gene networks, such
as approaches based on mutual information [20] or differential
equations [21], the use of a probabilistic approach offers the advan-
tage of taking into account the uncertainty about gene relationships
inferred from experimental data. For this reason BNs and DBNs have
been applied in the literature to analyze gene expression data [22].
As the structure of a BN is by definition acyclic, BNs do not allow the
direct representation and learning of feedback loop structures. To
capture these structures, it is necessary to use DBNs [23–31].
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Fig. 1. A dynamic Bayesian network and its translation into a gene regulatory
network. (A) Example of a simple dynamic Bayesian network representing the
probabilistic dependencies of four variables (A–B–C–D) between two consecutive
time points; (B) the network in (A) translated into a gene regulatory network. This
representation facilitates the identification of the feedback loop involving variables
A–C–B.
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Our novel hypothesis is that the genes involved in feedback loop
structures are key regulatory genes of the analyzed biological pro-
cess. To prove our hypothesis we applied DBNs to the analysis of
temporal expression data measured during the cell cycle of a hu-
man cancer cell line (HeLa cells) for about 1000 cDNA probes [32]
and identified a complex feedback loop structure involving 10
genes. An extensive validation based on literature analysis and
comparison with a list of genes experimentally verified to be in-
volved in regulating the cell cycle in cancer cells [33] showed that
the proposed approach was able to highlight core cell cycle genes.

2. Material and methods

2.1. Data

Whitfield et al. analyzed gene expression during cell cycle pro-
gression in HeLa cells [32]. In order to detect periodic activity in
cell cultures it is necessary to synchronize cells, i.e. to force them
to stop in a certain cell cycle phase. Subsequently, cells are released
from the block and they progress synchronously through cell cycle.
Whitfield et al. synchronized cells with three different methods
(double thymidine block, thymidine-nocodazole block and mitotic
shake-off) and performed five independent experiments, each time
using one of these synchronization methods and microarrays con-
taining either 20,000 or 40,000 features. RNA was isolated from
HeLa cells at various time points (1–2 h spaced) after release from
a synchronous arrest and reverse transcribed into Cy5-labeled
cDNA. Reference RNA was prepared from asynchronously growing
HeLa cells and reverse transcribed into Cy3-labeled cDNA. Cy5-
and Cy3-labeled cDNA were hybridized to cDNA microarrays, man-
ufactured at the Stanford Microarray Facility. The whole database
is available on the web [34]. Each probe represented on the micro-
arrays is identified by an IMAGE clone number (a cDNA clone pro-
duced by the Integrated Molecular Analysis of Genomes and their
Expression Consortium [35]).

To infer the DBN model we used gene expression data of the
experiment denoted by Whitfield et al. as ‘‘Thy-Thy 3’’, in which
cell synchronization was achieved through a double thymidine
block, which arrests cells at the start of the cell cycle, i.e. at the
G1/S boundary. Gene expression values were measured every hour,
from time 0 to 46 h, with cDNA microarrays containing about
40,000 probes. As the estimated cell cycle length in HeLa cells is
about 15 h, the available measurements span three cell cycles
[32]. Among the three experiments performed with the 40,000
probe arrays this is the one with the highest number of time
points. We concentrated our analysis on a subset of about 1000
probes identified by Whitfield et al. as cell cycle regulated (period-
ically expressed). Our dataset is made up of 1099 variables mea-
sured at 47 time points. The measurements we analyzed are log
ratios of the expression in synchronized cells (Cy5-labeled) versus
the expression in the reference asynchronous population (Cy3-
labeled). We annotated the IMAGE clones, retrieving the corre-
sponding UniGene cluster and GeneID, by means of the tool
SOURCE [36], developed at Stanford University and available on
the web [37]. According to an annotation performed in April
2009, 798 out of 1099 clones have a GeneID identifier. They corre-
spond to 647 different genes: the majority of genes (81.6%) are rep-
resented by only 1 clone, 14.8% is represented by 2 clones and the
remaining genes (3.6%) are represented by a maximum of 6 clones.
We decided to perform analysis at single-probe level, in order to
avoid the possible loss of information associated with the choice
of a single probe to represent a gene, or alternatively the averaging
over the probes mapping to the same gene. Other reasons for pre-
ferring a probe-based approach are that the annotation of probes
can change when information about a gene’s transcripts is refined
and the fact that annotation is not available for all probes.
To evaluate our inferred DBN model, we employed expression
data of the experiment ‘‘Thy-Noc’’, in which synchronization was
achieved through a thymidine-nocodazole block, which arrests
cells during mitosis, i.e. at M phase. In this experiment expression
values were measured every 2 h, from 0 to 36 h. Compared to the
only other available experiment that employed a synchronization
method different from double thymidine, ‘‘Thy-Noc’’ was preferred
for the validation as it had a lower number of missing values.

2.2. Dynamic Bayesian network inference

Bayesian networks are probabilistic graphical models formed by
two components, a directed acyclic graph (DAG) and a joint prob-
ability distribution. Nodes in the DAG represent random variables,
while arcs represent probabilistic dependencies. A conditional
probability distribution is associated with each node and its
parents (the variables with arcs pointing to it) and the overall
joint distribution is given by the product of these conditional
distributions.

A dynamic Bayesian network is a Bayesian network that models
the evolution of random variables (in our case: probe expression
values) over time. Under appropriate assumptions, this temporal
evolution can be entirely represented by a network of dependen-
cies between variables at time t and time t + 1 [38]. Thus, in our
case nodes in the DAG represent probe expression values at time
t and time t + 1 and arcs are always directed from nodes at time
t to nodes at t + 1 (Fig. 1).

We assume that variables Y1, . . . , Yv are continuous and that the
conditional distribution of each variable Yi with respect to its par-
ents is Gaussian, with mean li and variance r2

i ¼ 1=si [39]. The
parameter si is called precision. The conditional mean li of variable
Yi at time t + 1 is assumed to be a linear combination of the values
of the p(i) parents at time t:

li ¼ bi0 þ
XpðiÞ
j¼1

bijyij ð1Þ

where yij are the parent values and (bi0, bi1, . . . , bip(i)) are the regres-
sion parameters.

Learning a DBN requires learning both the structure of the DAG
and the parameters of the conditional probability distributions. The
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learning task can be approached by choosing a suitable score and a
search strategy. In a fully Bayesian framework the score is the pos-
terior probability p(M|D) of a network model M with respect to the
available data D. By Bayes’ theorem, it is possible to write:

pðMjDÞ / pðDjMÞpðMÞ ð2Þ

where p(D|M) is the marginal likelihood, which expresses the like-
lihood of the model irrespective of the specific parameters’ values,
and p(M) is the model’s prior probability. Assuming all models are
a priori equally probable, the posterior is directly proportional to
the marginal likelihood, which can thus be employed as score to
rank the alternative models.

Using the Gaussian probability model defined above and
employing suitable prior distributions for model parameters, the
marginal likelihood can be calculated in closed form [39]. Yet, as
the number of possible models to be explored is exponential in
the number of variables, it is necessary to resort to a heuristic search
strategy. We made use of a stepwise search strategy that extends the
K2 algorithm by Cooper and Herskovits [40]: the parent set of each
variable is initially assumed to be empty; then, the addition of one
parent at a time is tried and the model that most increases the
marginal likelihood is chosen as the new candidate model. The can-
didate model is accepted if the ratio between the new and the old
marginal likelihood (the so-called Bayes factor) is higher than a
specified threshold. In order to avoid the limitations of the greedy
search, we added a backward step during forward selection of
variables [39]. The algorithm’s implementation in Matlab is freely
available for academic users upon request from the authors.

2.3. Network model evaluation

The evaluation of the network model induced from data con-
sists of two main tasks: assessing its goodness of fit and assessing
its predictive accuracy.

The goodness of fit refers to the ability of the model to fit the
data from which the model itself was induced. In our case this cor-
responds to being able to reproduce the analyzed temporal profiles
with satisfactory accuracy. In order to test the goodness of fit it is
possible to adapt the approach for static BNs proposed by Sebas-
tiani et al., based on blanket residuals [41]. Given the network in-
duced from data, for each case k in the database, the fitted value for
every node Yi given all the other nodes is calculated. By the global
Markov property, only the configuration of the Markov blanket of
Yi is used to compute the fitted value: for continuous variables,
the fitted value ŷik is taken equal to the expected value of Yi given
its Markov blanket.

In the case of DBNs, the calculation is simplified by the fact that
the Markov blanket of a node at time t + 1 is given only by its par-
ents. Therefore we have:

ŷiðtþ1Þ ¼ E½yiðtþ1ÞjpaðyiÞt � ¼ lit ¼ b̂i0 þ
XpðiÞ
j¼1

b̂ijyijt ð3Þ

ŷiðtþ1Þ is the fitted value for variable Yi at time t + 1, pa(yi) are the p(i)
parents inferred during network learning, yijt are the parent values
at time t and ðb̂i0; . . . b̂ipðiÞÞ are the estimates of the regression param-
eters. Given expression data for T time points, the one-step-ahead
prediction is repeated for t ¼ 1; . . . ; T � 1 and the blanket residuals
are calculated as:

riðtþ1Þ ¼ yiðtþ1Þ � ŷiðtþ1Þ ð4Þ

During the stepwise search for the parent set of a node, it is pos-
sible that no single-parent model has a marginal likelihood higher
than the one of the model with no parents. Thus, in this case the
predicted value of the node will be constant across time and equal
to the estimated parameter b̂i0.
In regression models a commonly used measure for the good-
ness of fit is the root mean squared error (RMSE). In our case the
global RMSE is taken equal to the average of the root mean squared
errors relative to each of the v variables (RMSEi):

RMSE ¼ 1
v
Xv

i¼1

RMSEi ð5Þ

RMSEi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
T � 1

XT�1

t¼1
ðyiðtþ1Þ � ŷiðtþ1ÞÞ2

r
ð6Þ

As for any model inferred from data, a good fitting does not
mean that the model performs well when applied to new data. A
useful model must be able to generalize well; thus, the evaluation
of the network model on an independent test set is very important.
This evaluation implies predicting values for variables in the test set
relying on the model learned on the training set. In our case, the
‘‘predicted values’’ for each variable are its expected values (Eq.
(3)) calculated using the parents and the values for the regression
parameters inferred on the training set. A summary of the predic-
tive accuracy can be given by the RMSE calculated on the test set.

2.4. Transformation of the DBN into a regulatory network

In order to facilitate the visualization of the topological proper-
ties of the inferred network, and in particular feedback loops, the
DBN can be transformed into a regulatory network. In this network
nodes referring to the same variable at consecutive time points
(e.g. A(t) and A(t + 1)) are collapsed into a single node and an arc
going from variable A to variable B is drawn when in the DBN there
is an arc from A(t) to B(t + 1) (see Fig. 1). Given the fact that in our
DBN model variables at time t + 1 can depend only on variables at
the previous time point, there is a one-to-one correspondence be-
tween the DBN and its representation as a regulatory network.

3. Results

3.1. Inferred network model

As described in Section 2.1, the analyzed dataset contains
expression values for 1099 variables (probes) measured every
hour, from 0 to 46 h. Each probe of the array is identified by an IM-
AGE clone. We applied the dynamic Bayesian network algorithm
described in Section 2.2 to infer the network of dependencies be-
tween expression values of the analyzed variables at two consecu-
tive time points. Hyper-parameters for the prior distributions of
the precision and the regression coefficients were chosen as previ-
ously described [39], while the threshold for the Bayes factor was
set equal to 7 so that a new network link is added only if there is
substantial evidence in its favor [42].

The obtained DBN has been translated into a regulatory net-
work as described in Section 2.4. In this network the number of
parents for each variable ranges from 0 to 2; more specifically,
638 out of the 1099 analyzed variables had no connections (they
have no children and no parents) and 4 had only a self-loop.
Among the variables connected with at least one other, a large
group of 412 nodes can be found (Fig. 2). The relatively large num-
ber of nodes with no connections is due to the compromise be-
tween the model’s ability to fit the data and the model’s
complexity, which is ensured by setting a threshold for the Bayes
factor. Although all analyzed genes are cell-cycle related, the large
group of connected nodes reveals a set of genes highly dependent
on one another, likely to contain interesting regulatory structures.
Thus we focused following analyses on this group.

By analyzing the network in Fig. 2, we were indeed able to iden-
tify a group of 12 probes that are involved in interrelated feedback



Fig. 2. Gene network inferred analyzing human cell cycle expression data. Relying on the expression values for 1099 probes measured by Whitfield et al. [32] and on our
dynamic Bayesian network inference algorithm, we inferred a gene regulatory network. This network contains a large group of 412 connected probes, shown in the figure.
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loops (Fig. 3). It is worth noting that the parent variables of the
probes in this group are all included in the group itself. The 12 probes
map to 10 different genes, some of which are known to be key cell
cycle regulators: CDC2, TOP2A, PLK1, AURKA, and CENPA. Table 1
shows the IMAGE clone identifiers relative to the 12 nodes and the
corresponding annotation. Please note that in order to ensure that
the obtained loop structure does not significantly change when a un-
ique probe is used to represent each gene, we repeated the network
inference selecting, for the genes represented by more than one
probe, the probe with maximum variance. Results showed that the
loop genes and their relationships remained essentially the same.
3.2. Statistical evaluation of the network model

As assessment of the goodness of fit of the model on the training
set, the root mean squared error (RMSE) was calculated and found
to be equal to 0.13. The RMSE calculated on relative residuals (nor-
malized, for each probe, with respect to the range of the measured
profile) is 0.14. As an example of the fitting accuracy, Fig. 4 shows
the measured and fitted profiles for four loop probes.

As pointed out in Section 2.3, a better assessment of model per-
formance is obtained when the model is applied to an independent
dataset, different from the one employed to learn the model itself. In
the independent test set we employed (see Section 2.1), 1095 out of
the 1099 analyzed probes were measured and these include all the
412 probes in the connected group. We here recall that, in the test
set, the ‘‘predicted value’’ of a probe is equal to its expected value
calculated using the parents and the values of the regression param-
eters inferred on the training set. We found that the RMSE is equal
to 0.28 and the relative RMSE equal to 0.23. Fig. 5 shows the mea-
sured and predicted profiles for the same loop probes as in Fig. 4.
3.3. Simulations

Once a DBN model has been learned it can be used to perform in
silico analyses of the system. Our goal was to prioritize network



Fig. 3. Inferred feedback loops. Twelve nodes in the network in Fig. 2 are involved in interrelated feedback loops; these probes map to 10 different genes. The figure shows the
relationships between the loop nodes.

Table 1
Feedback loop nodes and their annotation. Each row of the table contains the IMAGE
clone ID of a loop probe with the respective UniGene cluster, gene name, gene symbol,
and gene ID.

Clone ID UG cluster Gene name Gene
symbol

Gene
ID

IMAGE:209066 Hs.250822 Aurora kinase A AURKA 6790
IMAGE:744047 Hs.592049 Polo-like kinase 1

(Drosophila)
PLK1 5347

IMAGE:447208 Hs.498248 Exonuclease 1 EXO1 9156
IMAGE:2017415 Hs.1594 Centromere protein A CENPA 1058
IMAGE:703633 Hs.405925 Proline/serine-rich

coiled-coil 1
PSRC1 84722

IMAGE:712505 Hs.334562 Cell division cycle 2, G1
to S and G2 to M

CDC2 983

IMAGE:200402 Hs.472716 Family with sequence
similarity 83, member D

FAM83D 81610

IMAGE:1540236 Hs.532968 Holliday junction
recognition protein

HJURP 55355

IMAGE:66406 Hs.532968 Holliday junction
recognition protein

HJURP 55355

IMAGE:50615 Hs.690634 Heat shock 70 kDa
protein 1-like

HSPA1L 3305

IMAGE:129865 Hs.250822 Aurora kinase A AURKA 6790
IMAGE:825470 Hs.156346 Topoisomerase (DNA) II

alpha 170 kDa
TOP2A 7153
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nodes on the basis of their influence on the system’s dynamics. We
devised a 1-input prediction: we considered one node at a time,
initialized the system using the measured expression values at
time 0 and predicted values at the following time points (up to
46 h) assuming the values of the considered node are known, while
those of all other nodes are not (and therefore for them predicted
values instead of measured values are employed for the one-
step-ahead prediction). In this way we were able to assign each
probe h a score s(h) by calculating the corresponding prediction er-
ror (estimated with the RMSE). Using the scores s(h), it is possible
to rank the input probes from the one with the lowest error (best
predictive ability) to the one with the highest error (worst predic-
tive ability). We performed this 1-input prediction both on the
training set and the test set. As possible inputs we considered only
the 113 probes out of the group of 412 that have at least one child
(which can also be the node itself). When the 1-input prediction
was performed on the training set, the 12 loop probes were the
first 12 best predictors (Table 2); when the prediction was per-
formed on the test set, 9 of the loop probes were the first 9 best
predictors and the other 3 were all within rank 19 (Table 3).

In order to associate a significance measure to this latter rank-
ing, it is possible to empirically estimate the probability of obtain-
ing a ‘‘better’’ ranking. By ‘‘ranking’’ we mean the positions of the
12 loop probes, and we say that a ranking is ‘‘better’’ than the ob-
served one if at least one position is lower and none of the others is
higher. As our observed ranking is (1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 18, 19),
examples of better rankings are (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 18, 19) or
(1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 19). We randomly sampled 12 posi-
tions out of the vector z = (1, 2, 3, . . . , 113) for 105 times and esti-
mated the probability of obtaining a better ranking by calculating
the proportion of sampled better rankings. The estimated probabil-
ity was 0. A less restrictive criterion for judging whether a ranking
is better consists in considering the average rank of the 12. In this
case the probability of obtaining a better ranking can be estimated
by the proportion of sampled rankings with lower average rank.
Also in this case the empirically estimated probability is 0.

As several research work on network analysis has focused
attention on the role of highly connected nodes, the so-called
‘‘hubs’’, it is interesting to investigate also their predictive ability.
By analyzing the distribution of node outdegrees (the number of
outgoing connections from a node) in the group of 412 connected
nodes, it is possible to find out that the median outdegree is equal
to 0 and the 95th percentile is equal to 6. In particular, the number
of nodes with outdegree higher than or equal to 6 is 24: we call
these ‘‘hub’’ nodes. By looking at the rank of the hub nodes in
the 1-input prediction, it is possible to see that the rank is not
inversely proportional to the outdegree and it significantly
worsens when considering the test set (Table 4). Moreover, 10 of
the 12 loop nodes are hub nodes but two are not. This analysis
strengthens the hypothesis that feedback loop structures highlight
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Fig. 4. Fitting assessment. The figure shows the measured (blue) and fitted (red dashed) profiles for four loop probes. The data are shown starting from the second time point,
as the first one is always taken equal to the first measured value. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version
of this article.)
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key nodes in the network that are not revealed by simply consid-
ering nodes connectivity.

Taken together, the 1-input prediction showed that, when the
analyzed system is treated as deterministic, the loop probes allow
a better reconstruction of the profiles than the other probes.
4. Discussion

4.1. Biological interpretation of results based on a large-scale silencing
experiment

Recently, Kittler and coworkers performed a genome-wide
RNA-interference (RNAi) analysis of HeLa cells in order to identify
genes important for cell division [33]. Cells were transfected with
endoribonuclease-prepared short interfering RNAs (esiRNAs) to
selectively knock down single genes. To determine the function
of the deleted genes on cell division the authors measured DNA
content 72 h after transfection. 17,828 genes were targeted and
1351 genes were found to alter cell cycle progression. Using a
second non-overlapping set of esiRNAs the authors confirmed the
results for 743 genes.

The study of Kittler et al. allows a quantitative evaluation of our
method’s efficiency in identifying key cell cycle regulators. The
17,828 targeted genes include 600 of the 647 genes analyzed in
our study. If the 1351 genes affecting the cell cycle are called
‘‘positive’’, 85 of our 600 investigated genes are positive (14.2%).
Out of the 10 loop genes, 9 were tested and 4 were positive
(44.4%, Table 5). Thus, the proportion of loop genes with a signifi-
cant effect on cell cycle progression is much higher than the pro-
portion of total genes with an effect. The statistical significance
of the enrichment in the proportion can be assessed by employing
the hypergeometric distribution to calculate the probability of at
least 4 genes having an effect if 9 genes are randomly chosen out
of a group of 600, 85 of which with an effect. This probability is
0.027. Furthermore, if the genes called ‘‘positive’’ are instead con-
sidered to be the 743 genes whose phenotype was confirmed using
the second set of esiRNAs, 51 of the 600 tested genes have an effect,
while all 4 loop genes are still positive. In this case, the p-value is
0.0043. Taken together, the study of Kittler confirmed that our net-
work approach can aid in the identification of key regulators.
4.2. Biological interpretation of results based on literature analysis

Even though the study by Kittler et al. provides a great data set
to evaluate our study, it might fail in identifying all cell cycle reg-
ulators. Therefore, it is important to include available literature
into the biological interpretation process.

Out of the 10 genes that we identified as involved in interre-
lated feedback loops, five encode well-characterized cell cycle reg-
ulators. CDC2 (also known as CDK1) is best known for its role in G2/M
phase. CDC2 forms with Cyclin B a complex called ‘‘mitosis-
promoting factor’’ that regulates the onset of mitosis [43]. The
genes PLK1, AURKA, and CENPA encode two kinases (Polo-like
kinase 1 and Aurora kinase A) and the centromere protein CENPA.
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Fig. 5. Predictive accuracy assessment on an independent test set. The figure shows the measured (blue) and predicted (red dashed) profiles for the same loop probes as in
Fig. 4 but relative to the independent expression dataset employed to evaluate our network model. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

Table 2
Loop probes: results of 1-input prediction on training set. Observed ranks of the loop
probes when the 1-input prediction is performed on the training set.

Rank Probe Gene symbol

1 IMAGE:200402 FAM83D
2 IMAGE:712505 CDC2
3 IMAGE:66406 HJURP
4 IMAGE:1540236 HJURP
5 IMAGE:209066 AURKA
6 IMAGE:447208 EXO1
7 IMAGE:744047 PLK1
8 IMAGE:129865 AURKA
9 IMAGE:50615 HSPA1L

10 IMAGE:2017415 CENPA
11 IMAGE:703633 PSRC1
12 IMAGE:825470 TOP2A

Table 3
Loop probes: results of 1-input prediction on independent test set. Observed ranks of
the loop probes when the 1-input prediction is performed on the test set.

Rank Probe Gene symbol

1 IMAGE:200402 FAM83D
2 IMAGE:712505 CDC2
3 IMAGE:50615 HSPA1L
4 IMAGE:744047 PLK1
5 IMAGE:1540236 HJURP
6 IMAGE:209066 AURKA
7 IMAGE:703633 PSRC1
8 IMAGE:129865 AURKA
9 IMAGE:447208 EXO1

11 IMAGE:2017415 CENPA
18 IMAGE:825470 TOP2A
19 IMAGE:66406 HJURP
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These proteins are key regulators of chromosome segregation
[44–48]. siRNA-mediated knockdown of CDC2, PLK1, and AURKA,
as well as functional inhibition of CENPA results in delays of cell
cycle progression and is often associated with an increase in apop-
tosis [45,46,49,50]. The importance of these genes for cell cycle
progression is underlined by the fact that they have been sug-
gested as potential targets for anti-cancer therapies [51–53]. The
gene TOP2A encodes a DNA topoisomerase, an enzyme that is able
to modify the topology of DNA. Although TOP2A knockdown did
not exhibit a cell cycle phenotype in the study by Kittler et al., it
has been demonstrated that this nuclear enzyme is involved in
chromosome condensation, chromatid separation, and the relief
of torsional stress during transcription and replication of DNA [54].

Recently, it has been discovered that also HJURP, PSRC1 and
FAM83D play important roles in cell cycle progression. HJURP
was found to be a part of the CENPA centromeric nucleosome asso-
ciated complex mediating the assembly of CENPA nucleosomes at
centromeres [55–57]. Moreover, HJURP plays a key role in the
immortality of cancer cells [58]. The gene PSRC1, also known as
DDA3, encodes a proline-rich protein. DDA3 is a regulator of



Table 4
Network hubs: results of 1-input prediction. Network hubs, their outdegree and the
observed rank in the 1-input prediction performed on the training and test sets.

Probe Gene
symbol

Outdegree Rank in 1-input
prediction on
training set

Rank in
1-input
prediction
on test set

IMAGE:200402 FAM83D 27 1 1
IMAGE:209066 AURKA 26 5 6
IMAGE:66406 HJURP 25 3 19
IMAGE:788256 KIF23 23 13 13
IMAGE:712505 CDC2 20 2 2
IMAGE:1540236 HJURP 18 4 5
IMAGE:624627 RRM2 14 19 23
IMAGE:51532 ARL6IP1 12 15 113
IMAGE:645565 DEPDC1 10 21 15
IMAGE:129865 AURKA 10 8 8
IMAGE:281898 PSRC1 9 14 10
IMAGE:292936 CDCA8 9 22 16
IMAGE:2019372 GTSE1 9 23 21
IMAGE:126650 DTL 9 26 27
IMAGE:810600 Not available 8 28 104
IMAGE:744047 PLK1 7 7 4
IMAGE:455128 CCNF 7 17 12
IMAGE:1035796 FAM72B 7 18 17
IMAGE:825470 TOP2A 7 12 18
IMAGE:146882 UBE2C 6 20 20
IMAGE:447208 EXO1 6 6 9
IMAGE:703633 PSRC1 6 11 7
IMAGE:1486028 Not available 6 16 14
IMAGE:1564601 FAM111B 6 27 35

Table 5
Biological interpretation of results based on a large-scale
silencing experiment. The table lists the silenced loop
genes and their observed effect on cell cycle progression
as reported in the study by Kittler and colleagues [33].

Gene Effect reported by Kittler et al.

CDC2 G2 arrest
HSPA1L None
PLK1 Cell division defect
AURKA Cell division defect
TOP2A None
EXO1 None
HJURP G0/1 arrest
FAM83D None
PSRC1 None
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spindle dynamics and is essential for mitotic progression [59]. Fi-
nally, FAM83D, also known as C20orf129, has been identified as
one of the human spindle components [60]. The last two loop
genes are poorly characterized. HSPA1L is a heat shock protein.
Heat shock proteins help to refold denatured proteins and degrade
harmful proteins. The gene EXO1 encodes a protein with exonucle-
ase activity that is involved in processes like DNA repair, recombi-
nation, replication, and maintenance of telomere integrity. It is
found to be frequently mutated during oncogenesis [61,62]. Future
experiments will reveal whether HSPA1L and EXO1 have a function
during cell cycle progression.

In conclusion, our Bayesian network approach proved efficient
in the identification of important regulators of the investigated
biological system, the cell cycle.
4.3. Sensitivity analysis varying the Bayes factor threshold

The search strategy employed to learn the DBN relies on the
Bayes factor (BF) parameter. The higher the value of the chosen
threshold for the BF, the more evidence is needed in order to add
a new parent. It is agreed in the literature that a BF between 1
and 3 indicates little evidence in favor of a new model versus the
currently employed one, while a BF of 3 to 10 already provides sub-
stantial evidence in favor of a new model [42]. Thus, a threshold of
7 constitutes a good compromise between the need to add connec-
tions conservatively (and therefore control the number of spurious
connections) and the need to be able to discover novel knowledge.
Our choice for the BF threshold is confirmed by a sensitivity anal-
ysis on datasets of 100 probes randomly sampled from the entire
dataset ‘‘Thy-Thy 3’’ of 40,000 probes by Whitfield et al. We indeed
expect that the average number of inferred connections in these
datasets should be close to zero. We thus sampled 103 datasets
and inferred networks using different thresholds for the BF,
namely: (1, 3, 5, 7, 10, 20, 50). Results showed that a threshold
of 1 is associated with an average 1.8 connections per node, while
thresholds greater than or equal to 3 lead to less than 0.1 connec-
tions per node.

In order to assess a posteriori the robustness of the inferred
loops, it is possible to consider the BFs relative to the local models
of the genes in the loop. In the case in which a gene has only one
parent p1, the BF associated with the gene’s local model is:
BF10 ¼ ML1

ML0
where ML1 is the marginal likelihood of the model in

which the gene has parent p1 and ML0 is the marginal likelihood
of the model in which the gene has no parents. BF10 can thus be
associated with the link between p1 and the gene. If instead a gene
has two parents p1 and p2, two BFs can be considered, namely BF10

and BF21. BF10 is defined as before, while BF21 is given by:
BF21 ¼ ML2

ML1
. where ML2 is the marginal likelihood of the model in

which the gene has both parents p1 and p2. Thus, BF10 can be asso-
ciated with the link between p1 and the gene and BF21 can be
associated with the link between p2 and the gene, yet remember-
ing that BF21 represents the increase in the marginal likelihood
when p2 is added to the parent set that already contains p1.
Fig. 6 shows the links in the loops annotated with the correspond-
ing BF.

If we set a higher threshold for the BF, some links are going to
disappear. Thus, some nodes might not be part of the loops any-
more, as there would be no feedback path going through these
nodes. In particular, by setting the threshold to 10, three genes,
namely TOP2A, CENPA and PSRC1, are no more involved in the loops
while the structure involving the other nodes remains unchanged.
It is interesting to note that the loop involving CDC2–FAM83D–
AURKA–HSPA1L is maintained up to a threshold equal to 50, that
is seven times higher than the one we employed. On the other
hand, by lowering the threshold, the complex loop structure
involving the 10 genes enlarges and includes more genes.

As our hypothesis is that the feedback loop structure highlights
key genes in cell cycle regulation, it is interesting to assess the pre-
dictions obtained for different BF thresholds employing Kittler
et al. data, as discussed above for threshold = 7. Table 6 reports,
for BF threshold = (3, 5, 10, 20, 50), the number of nodes involved
in the feedback loop structure (and the corresponding number of
genes, evaluated on the annotated nodes), the number of loop
genes tested by Kittler et al. and those with an effect when 743
‘‘positive genes’’ are considered, with the corresponding p-value.
Results show that predictions are significant for all considered
thresholds confirming that feedback loop structures are enriched
in key cell cycle genes.
5. Conclusions

The availability of high-throughput dynamic expression data
improves our chances to unravel cellular regulatory mechanisms.
DBNs are particularly suited for analyzing these data and infer
gene network models. It is important to note that gene networks
inferred from expression data alone do not necessarily represent



Fig. 6. Assessment of the robustness of the inferred feedback loops. The figure shows the relationships between the loop nodes annotated with the corresponding BF. In cases
in which a gene has two parents, the BF of the first added parent (BF10) is indicated with [1] and that of the second parent (BF21) with [2].

Table 6
Loop genes inferred for different Bayes factor thresholds and assessment of their role
in cell cycle regulation. The table reports, for different BF thresholds (BFth), the
number of nodes involved in the feedback loop structure (numloop) and the
corresponding number of genes calculated on the annotated probes (numgeneloop),
the number of loop genes tested by Kittler et al. (numgenetested), the number of loop
genes with an effect when the 743 ‘‘positive genes’’ are considered (Neffect743), and
the corresponding p-value (pval743). Results for BFth = 7 are reported as a reference.

BFth Numloop Numgeneloop Numgenetested Neffect743 pval743

3 31 23 21 6 0.0057
5 15 12 11 4 0.0098
7 12 10 9 4 0.0043

10 9 7 7 4 0.0014
20 4 4 4 2 0.0381
50 4 4 4 2 0.0381
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the biological regulation of one gene on another, i.e. a physical/bio-
chemical interaction between gene products. Instead, they are ab-
stract models of the dynamics of gene expression in the analyzed
system: an arc from gene A to gene B implies that the expression va-
lue of B depends on the expression value of A at the previous time
point, i.e. knowledge of A’s expression value helps in predicting
B’s expression value at the following time point. In the case of DBNs,
the dependence is probabilistic, which means that the probability
of B taking a certain value at time t + 1 is conditional on the value
of A at time t. At the molecular level, feedback loops identified by
DBNs may thus correspond to a variety of regulatory mechanisms.
The inferred model represents and summarizes such mechanisms
by means of probabilistic relationships between the observed vari-
ables. This provides the advantage, at a system level, to identify
feedback loops, which appear to be key regulatory elements of
the observed dynamics, as they confer systems fundamental prop-
erties such as robustness to disturbances and the possibility to ex-
hibit periodic behaviours.
In this paper we have applied a DBN approach to learn feedback
control structures from gene expression data measured during the
cell cycle in a human cancer cell line [32]. The analysis of the in-
ferred network led us to concentrate our attention on a group of
10 genes involved in various interrelated feedback loops. We refer
to these genes as loop genes. We hypothesized that the loop genes
have a central role in cell cycle regulation. Simulations of the net-
work dynamics supported our hypothesis and a large-scale silenc-
ing assay by Kittler et al. [33] showed that the proportion of loop
genes whose silencing causes abnormal cell cycle progression is
much higher than the proportion of total analyzed genes with
abnormal phenotype. Furthermore, analysis of the current litera-
ture showed that 8 loop genes are very important for cell cycle
regulation.

Let us note that the approach described in this paper builds on a
number of steps for DBN modeling and learning that have been
previously published in the literature, although not yet applied
to the discovery of feedback loops in cell cycle regulatory net-
works. Results show that a set of biologically relevant loops can
be found by applying a relatively simple model, which is based
on linear relationships between genes. Moreover, the model search
was performed by resorting to a stepwise modification of the well-
known K2 algorithm, which allowed obtaining the solution in a
computationally efficient way, so that it was possible to learn gene
networks starting from hundreds of probes. Thus, the performed
modeling choices constitute a good compromise between the need
of obtaining results by processing large number of genes and the
goal of keeping the number of false positives (i.e. spurious feed-
backs) as low as possible [63].

The cell cycle is particularly suited to apply our method as its
understanding is of crucial relevance for cancer research. The ob-
tained results may therefore be important for defining molecular
targets of drugs and proposing new therapeutic interventions. Fur-
thermore, the cell cycle is a well studied biological process, for
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which a large amount of literature for validating results is avail-
able. Yet the approach is applicable to other biological systems:
it could for example be particularly interesting in the study of
developmental/differentiation processes in stem cells to prioritize
genes for further biological experiments.
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