63 research outputs found

    Relation between weather radar equation and first-order backscattering theory

    Get PDF
    International audienceAim of this work is to provide a new insight into the physical basis of the meteorological-radar theory in attenuating media. Starting form the general integral form of the weather radar equation, a modified form of the classical weather radar equation at attenuating wavelength is derived. This modified radar equation includes a new parameter, called the range-bin extinction factor, taking into account the rainfall path attenuation within each range bin. It is shown that, only in the case of low-to-moderate attenuating media, the classical radar equation at attenuating wavelength can be used. These theoretical results are corroborated by using the radiative transfer theory where multiple scattering phenomena can be quantified. From a new definition of the radar reflectivity, in terms of backscattered specific intensity, a generalised radar equation is deduced. Within the assumption of first-order backscattering, the generalised radar equation is reduced to the modified radar equation, previously obtained. This analysis supports the conclusion that the description of radar observations at attenuating wavelength should include, in principle, first-order scattering effects. Numerical simulations are performed by using statistical relationships among the radar reflectivity, rain rate and specific attenuation, derived from literature. Results confirm that the effect of the range-bin extinction factor, depending on the considered frequency and range resolution, can be significant at X band for intense rain, while at Ka band and above it can become appreciable even for moderate rain. A discussion on the impact of these theoretical and numerical results is finally included

    Water diffusion modulates the cest effect on Tb(III)-mesoporous silica probes

    Get PDF
    The anchoring of lanthanide(III) chelates on the surface of mesoporous silica nanoparticles (MSNs) allowed their investigation as magnetic resonance imaging (MRI) and chemical exchange saturation transfer (CEST) contrast agents. Since their efficiency is strongly related to the interaction occurring between Ln-chelates and \u201cbulk\u201d water, an estimation of the water diffusion inside MSNs channels is very relevant. Herein, a method based on the exploitation of the CEST properties of TbDO3A-MSNs was applied to evaluate the effect of water diffusion inside MSN channels. Two MSNs, namely MCM-41 and SBA-15, with different pores size distributions were functionalized with TbDO3A-like chelates and polyethylene glycol (PEG) molecules and characterized by HR-TEM microscopy, IR spectroscopy, N2 physisorption, and thermogravimetric analysis (TGA). The different distribution of Tb-complexes in the two systems, mainly on the external surface in case of MCM-41 or inside the internal pores for SBA-15, resulted in variable CEST efficiency. Since water molecules diffuse slowly inside silica channels, the CEST effect of the LnDO3A-SBA-15 system was found to be one order of magnitude lower than in the case of TbDO3A-MCM-41. The latter system reaches an excellent sensitivity of ca. 55 \ub1 5 \ub5M, which is useful for future theranostic or imaging applications

    Comparison of genetic algorithms used to evolve specialisation in groups of robots

    Get PDF
    This paper investigates the role of genetic algorithms in determining which kind of specialisation emerges in decentralised simulated teams of robots controlled by evolved neural networks. As shown in previous works, different tasks may be better solved by robots specialized in a particular manner. However it was not clarified how much the genetic algorithm used might drive the evolution of one kind of specialisation or another: this is the goal of this paper. The study is conducted by evolving teams of robots that have to solve two different tasks that are better accomplished by using different types of specialisation (innate versus situated). Results suggest that the type of genetic algorithm employed plays a major role in determining how robots specialize and in most of the cases the algorithms used tend to always yield the same specialization. Only one of the algorithms tested led to the emergence of the most suitable kind of specialisation for each one of the two tasks

    Eight-Coordinate, Stable Fe(II) Complex as a Dual 19F and CEST Contrast Agent for Ratiometric pH Imaging

    Get PDF
    Accurate mapping of small changes in pH is essential to the diagnosis of diseases such as cancer. The difficulty in mapping pH accurately in vivo resides in the need for the probe to have a ratiometric response so as to be able to independently determine the concentration of the probe in the body independently from its response to pH. The complex FeII-DOTAm-F12 behaves as an MRI contrast agent with dual 19F and CEST modality. The magnitude of its CEST response is dependent both on the concentration of the complex and on the pH, with a significant increase in saturation transfer between pH 6.9 and 7.4, a pH range that is relevant to cancer diagnosis. The signal-to-noise ratio of the 19F signal of the probe, on the other hand, depends only on the concentration of the contrast agent and is independent of pH. As a result, the complex can ratiometrically map pH and accurately distinguish between pH 6.9 and 7.4. Moreover, the iron(II) complex is stable in air at room temperature and adopts a rare 8-coordinate g..
    corecore